
ASN1PARSE(1) OpenSSL ASN1PARSE(1)

NAME
asn1parse − ASN.1 parsing tool

SYNOPSIS
openssl asn1parse[−inform PEM DER] [−in filename] [−out filename] [−noout] [−offset number]
[−length number] [−i] [−oid filename] [−strparse offset]

DESCRIPTION
The asn1parsecommand is a diagnostic utility that can parseASN.1 structures. It can also be used to
extract data fromASN.1 formatted data.

OPTIONS
−inform DER PEM

the input format.DER is binary format andPEM (the default) is base64 encoded.

−in filename
the input file, default is standard input

−out filename
output file to place theDER encoded data into. If this option is not present then no data will be
output. This is most useful when combined with the−strparseoption.

−noout
don’t output the parsed version of the input file.

−offset number
starting offset to begin parsing, default is start of file.

−length number
number of bytes to parse, default is until end of file.

−i indents the output according to the ‘‘depth’’ of the structures.

−oid filename
a file containing additionalOBJECTIDENTIFIERs (OIDs). The format of this file is described in
theNOTESsection below.

−strparse offset
parse the contents octets of theASN.1 object starting atoffset. This option can be used multiple
times to ‘‘drill down’’ into a nested structure.

OUTPUT

The output will typically contain lines like this:

0:d=0 hl=4 l= 681 cons: SEQUENCE

.....

229:d=3 hl=3 l= 141 prim: BIT STRING
373:d=2 hl=3 l= 162 cons: cont [3]
376:d=3 hl=3 l= 159 cons: SEQUENCE
379:d=4 hl=2 l= 29 cons: SEQUENCE
381:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Identifier
386:d=5 hl=2 l= 22 prim: OCTET STRING
410:d=4 hl=2 l= 112 cons: SEQUENCE
412:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Authority Key Identifier
417:d=5 hl=2 l= 105 prim: OCTET STRING
524:d=4 hl=2 l= 12 cons: SEQUENCE

.....

This example is part of a self signed certificate. Each line starts with the offset in decimal.d=XX speci-
fies the current depth. The depth is increased within the scope of anySETor SEQUENCE. hl=XX gives
the header length (tag and length octets) of the current type.l=XX gives the length of the contents
octets.

The−i option can be used to make the output more readable.

0.9.7c 2000-01-21 1

ASN1PARSE(1) OpenSSL ASN1PARSE(1)

Some knowledge of theASN.1 structure is needed to interpret the output.

In this example theBIT STRING at offset 229 is the certificate public key. The contents octets of this
will contain the public key information. This can be examined using the option−strparse 229to yield:

0:d=0 hl=3 l= 137 cons: SEQUENCE
3:d=1 hl=3 l= 129 prim: INTEGER :E5D21E1F5C8D208EA7A2166C7FAF9F6BDF2059669C60876DDB70840F1A5AAFA59699FE471F379F1DD6A487E7D5409AB6A88D4A9746E24B91D8CF55DB3521015460C8EDE44EE8A4189F7A7BE77D6CD3A9AF2696F486855CF58BF0EDF2B4068058C7A947F52548DDF7E15E96B385F86422BEA9064A3EE9E1158A56E4A6F47E5897

135:d=1 hl=2 l= 3 prim: INTEGER :010001

NOTES
If an OID is not part of OpenSSL’s internal table it will be represented in numerical form (for example
1.2.3.4). The file passed to the−oid option allows additional OIDs to be included. Each line consists of
three columns, the first column is theOID in numerical format and should be followed by white space.
The second column is the ‘‘short name’’ which is a single word followed by white space. The final col-
umn is the rest of the line and is the ‘‘long name’’.asn1parsedisplays the long name. Example:

1.2.3.4 shortName A long name

BUGS
There should be options to change the format of input lines. The output of someASN.1 types is not
well handled (if at all).

2 2000-01-21 0.9.7c

CA(1) OpenSSL CA(1)

NAME
ca − sample minimal CA application

SYNOPSIS
openssl ca[−verbose] [−config filename] [−name section] [−gencrl] [−rev oke file] [−crl_reason
reason] [−crl_hold instruction] [−crl_compromise time] [−crl_CA_compromise time] [−subj arg]
[−crldays days] [−crlhours hours] [−crlexts section] [−startdate date] [−enddate date] [−days arg]
[−md arg] [−policy arg] [−keyfile arg] [−key arg] [−passin arg] [−cert file] [−in file] [−out file]
[−notext] [−outdir dir] [−infiles] [−spkac file] [−ss_cert file] [−preserveDN] [−noemailDN]
[−batch] [−msie_hack] [−extensions section] [−extfile section] [−engine id]

DESCRIPTION
Theca command is a minimalCA application. It can be used to sign certificate requests in a variety of
forms and generate CRLs it also maintains a text database of issued certificates and their status.

The options descriptions will be divided into each purpose.

CA OPTIONS
−config filename

specifies the configuration file to use.

−name section
specifies the configuration file section to use (overridesdefault_ca in thecasection).

−in filename
an input filename containing a single certificate request to be signed by theCA.

−ss_cert filename
a single self signed certificate to be signed by theCA.

−spkac filename
a file containing a single Netscape signed public key and challenge and additional field values to
be signed by theCA. See theSPKAC FORMAT section for information on the required format.

−infiles
if present this should be the last option, all subsequent arguments are assumed to the the names of
files containing certificate requests.

−out filename
the output file to output certificates to. The default is standard output. The certificate details will
also be printed out to this file.

−outdir directory
the directory to output certificates to. The certificate will be written to a filename consisting of the
serial number in hex with ‘‘.pem’’ appended.

−cert
theCA certificate file.

−keyfile filename
the private key to sign requests with.

−key password
the password used to encrypt the private key. Since on some systems the command line arguments
are visible (e.g. Unix with the ’ps’ utility) this option should be used with caution.

−passin arg
the key password source. For more information about the format ofarg see thePASS PHRASE
ARGUMENTS section inopenssl(1).

−verbose
this prints extra details about the operations being performed.

−notext
don’t output the text form of a certificate to the output file.

0.9.7c 2003-07-03 3

CA(1) OpenSSL CA(1)

−startdate date
this allows the start date to be explicitly set. The format of the date isYYMMDDHHMMSSZ (the
same as anASN1 UTCTime structure).

−enddate date
this allows the expiry date to be explicitly set. The format of the date isYYMMDDHHMMSSZ (the
same as anASN1 UTCTime structure).

−days arg
the number of days to certify the certificate for.

−md alg
the message digest to use. Possible values include md5, sha1 and mdc2. This option also applies
to CRLs.

−policy arg
this option defines theCA ‘‘policy’’ to use. This is a section in the configuration file which decides
which fields should be mandatory or match theCA certificate. Check out thePOLICY FORMAT
section for more information.

−msie_hack
this is a legacy option to makeca work with very old versions of theIE certificate enrollment con-
trol ‘‘certenr3’’. It used UniversalStrings for almost everything. Since the old control has various
security bugs its use is strongly discouraged. The newer control ‘‘Xenroll’’ does not need this
option.

−preserveDN
Normally theDN order of a certificate is the same as the order of the fields in the relevant policy
section. When this option is set the order is the same as the request. This is largely for compatibil-
ity with the olderIE enrollment control which would only accept certificates if their DNs match
the order of the request. This is not needed for Xenroll.

−noemailDN
The DN of a certificate can contain theEMAIL field if present in the requestDN, howev er it is
good policy just having the e−mail set into the altName extension of the certificate. When this
option is set theEMAIL field is removed from the certificate’ subject and set only in the, eventu-
ally present, extensions. Theemail_in_dn keyword can be used in the configuration file to enable
this behaviour.

−batch
this sets the batch mode. In this mode no questions will be asked and all certificates will be certi-
fied automatically.

−extensions section
the section of the configuration file containing certificate extensions to be added when a certificate
is issued (defaults tox509_extensionsunless the−extfile option is used). If no extension section
is present then, a V1 certificate is created. If the extension section is present (even if it is empty),
then a V3 certificate is created.

−extfile file
an additional configuration file to read certificate extensions from (using the default section unless
the−extensionsoption is also used).

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

CRL OPTIONS
−gencrl

this option generates aCRL based on information in the index file.

−crldays num
the number of days before the nextCRL is due. That is the days from now to place in theCRL nex-
tUpdate field.

4 2003-07-03 0.9.7c

CA(1) OpenSSL CA(1)

−crlhours num
the number of hours before the nextCRL is due.

−rev oke filename
a filename containing a certificate to revoke.

−crl_reason reason
revocation reason, wherereasonis one of:unspecified, keyCompromise, CACompromise, affil-
iationChanged,superseded, cessationOfOperation, certificateHold or removeFromCRL. The
matching ofreasonis case insensitive. Setting any rev ocation reason will make theCRL v2.

In practive removeFromCRL is not particularly useful because it is only used in delta CRLs
which are not currently implemented.

−crl_hold instruction
This sets theCRL revocation reason code tocertificateHold and the hold instruction toinstruc-
tion which must be anOID. Although anyOID can be used onlyholdInstructionNone (the use of
which is discouraged byRFC2459) holdInstructionCallIssuer or holdInstructionReject will nor-
mally be used.

−crl_compromise time
This sets the revocation reason tokeyCompromiseand the compromise time totime. time should
be in GeneralizedTime format that isYYYYMMDDHHMMSSZ .

−crl_CA_compromise time
This is the same ascrl_compromiseexcept the revocation reason is set toCACompromise.

−subj arg
supersedes subject name given in the request. The arg must be formatted as
/type0=value0/type1=value1/type2=..., characters may be escaped by \ (backslash), no spaces are
skipped.

−crlexts section
the section of the configuration file containingCRL extensions to include. If noCRL extension sec-
tion is present then a V1CRL is created, if theCRL extension section is present (even if it is
empty) then a V2CRL is created. TheCRL extensions specified areCRL extensions andnot CRL
entry extensions. It should be noted that some software (for example Netscape) can’t handle V2
CRLs.

CONFIGURATION FILE OPTIONS
The section of the configuration file containing options forca is found as follows: If the−namecom-
mand line option is used, then it names the section to be used. Otherwise the section to be used must be
named in thedefault_ca option of theca section of the configuration file (or in the default section of
the configuration file). Besidesdefault_ca, the following options are read directly from thecasection:
RANDFILE
preserve
msie_hack With the exception ofRANDFILE , this is probably a bug and may change in future
releases.

Many of the configuration file options are identical to command line options. Where the option is
present in the configuration file and the command line the command line value is used. Where an
option is described as mandatory then it must be present in the configuration file or the command line
equivalent (if any) used.

oid_file
This specifies a file containing additionalOBJECT IDENTIFIERS . Each line of the file should
consist of the numerical form of the object identifier followed by white space then the short name
followed by white space and finally the long name.

oid_section
This specifies a section in the configuration file containing extra object identifiers. Each line
should consist of the short name of the object identifier followed by= and the numerical form.
The short and long names are the same when this option is used.

0.9.7c 2003-07-03 5

CA(1) OpenSSL CA(1)

new_certs_dir
the same as the−outdir command line option. It specifies the directory where new certificates will
be placed. Mandatory.

certificate
the same as−cert. It giv es the file containing theCA certificate. Mandatory.

private_key
same as the−keyfile option. The file containing theCA private key. Mandatory.

RANDFILE
a file used to read and write random number seed information, or anEGD socket (see
RAND_egd(3)).

default_days
the same as the−daysoption. The number of days to certify a certificate for.

default_startdate
the same as the−startdate option. The start date to certify a certificate for. If not set the current
time is used.

default_enddate
the same as the−enddateoption. Either this option ordefault_days(or the command line equiv-
alents) must be present.

default_crl_hours default_crl_days
the same as the−crlhours and the−crldays options. These will only be used if neither command
line option is present. At least one of these must be present to generate aCRL.

default_md
the same as the−md option. The message digest to use. Mandatory.

database
the text database file to use. Mandatory. This file must be present though initially it will be empty.

serial
a text file containing the next serial number to use in hex. Mandatory. This file must be present
and contain a valid serial number.

x509_extensions
the same as−extensions.

crl_extensions
the same as−crlexts.

preserve
the same as−preserveDN

email_in_dn
the same as−noemailDN. If you want theEMAIL field to be removed from theDN of the certifi-
cate simply set this to ’no’. If not present the default is to allow for theEMAIL filed in the certifi-
cate’sDN.

msie_hack
the same as−msie_hack

policy
the same as−policy. Mandatory. See thePOLICY FORMAT section for more information.

nameopt, certopt
these options allow the format used to display the certificate details when asking the user to con-
firm signing. All the options supported by thex509utilities −nameoptand−certopt switches can
be used here, except theno_signameandno_sigdumpare permanently set and cannot be disabled
(this is because the certificate signature cannot be displayed because the certificate has not been
signed at this point).

For convenience the valuesca_defaultare accepted by both to produce a reasonable output.

If neither option is present the format used in earlier versions of OpenSSL is used. Use of the old
format is strongly discouraged because it only displays fields mentioned in thepolicy section,

6 2003-07-03 0.9.7c

CA(1) OpenSSL CA(1)

mishandles multicharacter string types and does not display extensions.

copy_extensions
determines how extensions in certificate requests should be handled. If set tononeor this option
is not present then extensions are ignored and not copied to the certificate. If set tocopy then any
extensions present in the request that are not already present are copied to the certificate. If set to
copyall then all extensions in the request are copied to the certificate: if the extension is already
present in the certificate it is deleted first. See theWARNINGS section before using this option.

The main use of this option is to allow a certificate request to supply values for certain extensions
such as subjectAltName.

POLICY FORMAT
The policy section consists of a set of variables corresponding to certificateDN fields. If the value is
‘‘match’’ then the field value must match the same field in theCA certificate. If the value is ‘‘supplied’’
then it must be present. If the value is ‘‘optional’’ then it may be present. Any fields not mentioned in
the policy section are silently deleted, unless the−preserveDNoption is set but this can be regarded
more of a quirk than intended behaviour.

SPKAC FORMAT
The input to the−spkaccommand line option is a Netscape signed public key and challenge. This will
usually come from theKEYGEN tag in anHTML form to create a new private key. It is howev er possi-
ble to create SPKACs using thespkacutility.

The file should contain the variableSPKAC set to the value of theSPKAC and also the requiredDN
components as name value pairs. If you need to include the same component twice then it can be pre-
ceded by a number and a ’.’.

EXAMPLES
Note: these examples assume that theca directory structure is already set up and the relevant files
already exist. This usually involves creating aCA certificate and private key withreq, a serial number
file and an empty index file and placing them in the relevant directories.

To use the sample configuration file below the directories demoCA, demoCA/private and
demoCA/newcerts would be created. TheCA certificate would be copied to demoCA/cacert.pem and its
private key to demoCA/private/cakey.pem. A file demoCA/serial would be created containing for
example ‘‘01’’ and the empty index file demoCA/index.txt.

Sign a certificate request:

openssl ca -in req.pem -out newcert.pem

Sign a certificate request, usingCA extensions:

openssl ca -in req.pem -extensions v3_ca -out newcert.pem

Generate aCRL

openssl ca -gencrl -out crl.pem

Sign several requests:

openssl ca -infiles req1.pem req2.pem req3.pem

Certify a NetscapeSPKAC:

openssl ca -spkac spkac.txt

A sampleSPKACfile (theSPKACline has been truncated for clarity):

SPKAC=MIG0MGAwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAn7PDhCeV/xIxUg8V70YRxK2A5
CN=Steve Test
emailAddress=steve@openssl.org
0.OU=OpenSSL Group
1.OU=Another Group

A sample configuration file with the relevant sections forca:

[ca]
default_ca = CA_default # The default ca section

0.9.7c 2003-07-03 7

CA(1) OpenSSL CA(1)

[C A_default]

dir = ./demoCA # top dir
database = $dir/index.txt # index file.
new_certs_dir = $dir/newcerts # new certs dir

certificate = $dir/cacert.pem # The CA cert
serial = $dir/serial # serial no file
private_key = $dir/private/cakey.pem# CA private key
RANDFILE = $dir/private/.rand # random number file

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # md to use

policy = policy_any # default policy
email_in_dn = no # Don’t add the email into cert DN

nameopt = ca_default # Subject name display option
certopt = ca_default # Certificate display option
copy_extensions = none # Don’t copy extensions from request

[policy_any]
countryName = supplied
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

FILES
Note: the location of all files can change either by compile time options, configuration file entries, envi-
ronment variables or command line options. The values below reflect the default values.

/usr/local/ssl/lib/openssl.cnf - master configuration file
./demoCA - main CA directory
./demoCA/cacert.pem - CA certificate
./demoCA/private/cakey.pem - CA private key
./demoCA/serial - CA serial number file
./demoCA/serial.old - CA serial number backup file
./demoCA/index.txt - CA text database file
./demoCA/index.txt.old - CA text database backup file
./demoCA/certs - certificate output file
./demoCA/.rnd - CA random seed information

ENVIRONMENT VARIABLES
OPENSSL_CONF reflects the location of master configuration file it can be overridden by the−config
command line option.

RESTRICTIONS
The text database index file is a critical part of the process and if corrupted it can be difficult to fix. It is
theoretically possible to rebuild the index file from all the issued certificates and a currentCRL: how-
ev er there is no option to do this.

V2 CRL features like deltaCRL support andCRL numbers are not currently supported.

Although several requests can be input and handled at once it is only possible to include oneSPKACor
self signed certificate.

BUGS
The use of an in memory text database can cause problems when large numbers of certificates are
present because, as the name implies the database has to be kept in memory.

It is not possible to certify two certificates with the sameDN: this is a side effect of how the text data-
base is indexed and it cannot easily be fixed without introducing other problems. Some S/MIME clients
can use two certificates with the sameDN for separate signing and encryption keys.

The ca command really needs rewriting or the required functionality exposed at either a command or

8 2003-07-03 0.9.7c

CA(1) OpenSSL CA(1)

interface level so a more friendly utility (perl script orGUI) can handle things properly. The scripts
CA.shandCA.pl help a little but not very much.

Any fields in a request that are not present in a policy are silently deleted. This does not happen if the
−preserveDNoption is used. To enforce the absence of theEMAIL field within theDN, as suggested by
RFCs, regardless the contents of the request’ subject the−noemailDN option can be used. The behav-
iour should be more friendly and configurable.

Cancelling some commands by refusing to certify a certificate can create an empty file.

WARNINGS
Thecacommand is quirky and at times downright unfriendly.

Theca utility was originally meant as an example of how to do things in aCA. It was not supposed to
be used as a full blownCA itself: nevertheless some people are using it for this purpose.

The ca command is effectively a single user command: no locking is done on the various files and
attempts to run more than onecacommand on the same database can have unpredictable results.

Thecopy_extensionsoption should be used with caution. If care is not taken then it can be a security
risk. For example if a certificate request contains a basicConstraints extension withCA:TRUE and the
copy_extensionsvalue is set tocopyall and the user does not spot this when the certificate is displayed
then this will hand the requestor a validCA certificate.

This situation can be avoided by settingcopy_extensionsto copy and including basicConstraints with
CA:FALSE in the configuration file. Then if the request contains a basicConstraints extension it will be
ignored.

It is advisable to also include values for other extensions such askeyUsageto prevent a request supply-
ing its own values.

Additional restrictions can be placed on theCA certificate itself. For example if theCA certificate has:

basicConstraints = CA:TRUE, pathlen:0

then even if a certificate is issued withCA:TRUE it will not be valid.

SEE ALSO
req(1), spkac(1), x509(1), CA.pl (1), config(5)

0.9.7c 2003-07-03 9

CA.PL(1) OpenSSL CA.PL(1)

NAME
CA.pl − friendlier interface for OpenSSL certificate programs

SYNOPSIS
CA.pl [−?] [−h] [−help] [−newcert] [−newreq] [−newreq−nodes] [−newca] [−xsign] [−sign] [−sign-
req] [−signcert] [−verify] [files]

DESCRIPTION
TheCA.pl script is a perl script that supplies the relevant command line arguments to theopensslcom-
mand for some common certificate operations.It is intended to simplify the process of certificate cre-
ation and management by the use of some simple options.

COMMAND OPTIONS
?, −h, −help

prints a usage message.

−newcert
creates a new self signed certificate. The private key and certificate are written to the file
‘‘newreq.pem’’.

−newreq
creates a new certificate request. The private key and request are written to the file ‘‘newreq.pem’’.

−newreq−nowdes
is like −newreqexcept that the private key will not be encrypted.

−newca
creates a newCA hierarchy for use with theca program (or the−signcert and−xsign options).
The user is prompted to enter the filename of theCA certificates (which should also contain the
private key) or by hittingENTER details of theCA will be prompted for. The relevant files and
directories are created in a directory called ‘‘demoCA’’ in the current directory.

−pkcs12
create a PKCS#12 file containing the user certificate, private key andCA certificate. It expects the
user certificate and private key to be in the file ‘‘newcert.pem’’ and theCA certificate to be in the
file demoCA/cacert.pem, it creates a file ‘‘newcert.p12’’. This command can thus be called after
the −sign option. The PKCS#12 file can be imported directly into a browser. If there is an addi-
tional argument on the command line it will be used as the ‘‘friendly name’’ for the certificate
(which is typically displayed in the browser list box), otherwise the name ‘‘My Certificate’’ is
used.

−sign,−signreq,−xsign
calls the ca program to sign a certificate request. It expects the request to be in the file
‘‘newreq.pem’’. The new certificate is written to the file ‘‘newcert.pem’’ except in the case of the
−xsignoption when it is written to standard output.

−signCA
this option is the same as the−signreq option except it uses the configuration file sectionv3_ca
and so makes the signed request a validCA certificate. This is useful when creating intermediate
CA from a rootCA.

−signcert
this option is the same as−sign except it expects a self signed certificate to be present in the file
‘‘newreq.pem’’.

−verify
verifies certificates against theCA certificate for ‘‘demoCA’’. If no certificates are specified on the
command line it tries to verify the file ‘‘newcert.pem’’.

files
one or more optional certificate file names for use with the−verify command.

EXAMPLES
Create aCA hierarchy:

10 2001-01-11 0.9.7c

CA.PL(1) OpenSSL CA.PL(1)

CA.pl -newca

Complete certificate creation example: create aCA, create a request, sign the request and finally create
a PKCS#12 file containing it.

CA.pl -newca
CA.pl -newreq
CA.pl -signreq
CA.pl -pkcs12 "My Test Certificate"

DSA CERTIFICATES
Although theCA.pl createsRSA CAs and requests it is still possible to use it withDSA certificates and
requests using thereq(1) command directly. The following example shows the steps that would typi-
cally be taken.

Create someDSA parameters:

openssl dsaparam -out dsap.pem 1024

Create aDSA CA certificate and private key:

openssl req -x509 -newkey dsa:dsap.pem -keyout cacert.pem -out cacert.pem

Create theCA directories and files:

CA.pl -newca

enter cacert.pem when prompted for theCA file name.

Create aDSA certificate request and private key (a different set of parameters can optionally be created
first):

openssl req -out newreq.pem -newkey dsa:dsap.pem

Sign the request:

CA.pl -signreq

NOTES
Most of the filenames mentioned can be modified by editing theCA.pl script.

If the demoCA directory already exists then the−newcacommand will not overwrite it and will do
nothing. This can happen if a previous call using the−newcaoption terminated abnormally. To get the
correct behaviour delete the demoCA directory if it already exists.

Under some environments it may not be possible to run theCA.pl script directly (for example Win32)
and the default configuration file location may be wrong. In this case the command:

perl -S CA.pl

can be used and theOPENSSL_CONFenvironment variable changed to point to the correct path of the
configuration file ‘‘openssl.cnf ’’.

The script is intended as a simple front end for theopensslprogram for use by a beginner. Its behaviour
isn’t always what is wanted. For more control over the behaviour of the certificate commands call the
opensslcommand directly.

ENVIRONMENT VARIABLES
The variableOPENSSL_CONF if defined allows an alternative configuration file location to be speci-
fied, it should contain the full path to the configuration file, not just its directory.

SEE ALSO
x509(1), ca(1), req(1), pkcs12(1), config(5)

0.9.7c 2001-01-11 11

CIPHERS(1) OpenSSL CIPHERS(1)

NAME
ciphers − SSL cipher display and cipher list tool.

SYNOPSIS
openssl ciphers[−v] [−ssl2] [−ssl3] [−tls1] [cipherlist]

DESCRIPTION
Thecipherlist command converts OpenSSL cipher lists into orderedSSL cipher preference lists. It can
be used as a test tool to determine the appropriate cipherlist.

COMMAND OPTIONS
−v verbose option. List ciphers with a complete description of protocol version (SSLv2 or SSLv3; the

latter includesTLS), key exchange, authentication, encryption and mac algorithms used along with
any key size restrictions and whether the algorithm is classed as an ‘‘export’’ cipher. Note that
without the−v option, ciphers may seem to appear twice in a cipher list; this is when similar
ciphers are available forSSLv2 and forSSLv3/TLS v1.

−ssl3
only includeSSLv3 ciphers.

−ssl2
only includeSSLv2 ciphers.

−tls1
only includeTLS v1 ciphers.

−h, −?
print a brief usage message.

cipherlist
a cipher list to convert to a cipher preference list. If it is not included then the default cipher list
will be used. The format is described below.

CIPHER LIST FORMAT
The cipher list consists of one or morecipher stringsseparated by colons. Commas or spaces are also
acceptable separators but colons are normally used.

The actual cipher string can take sev eral different forms.

It can consist of a single cipher suite such asRC4−SHA.

It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain type.
For exampleSHA1 represents all ciphers suites using the digest algorithmSHA1 andSSLv3 represents
all SSLv3 algorithms.

Lists of cipher suites can be combined in a single cipher string using the+ character. This is used as a
logical and operation. For exampleSHA1+DES represents all cipher suites containing theSHA1 and
theDESalgorithms.

Each cipher string can be optionally preceded by the characters!, − or +.

If ! is used then the ciphers are permanently deleted from the list. The ciphers deleted can never reap-
pear in the list even if they are explicitly stated.

If − is used then the ciphers are deleted from the list, but some or all of the ciphers can be added again
by later options.

If + is used then the ciphers are moved to the end of the list. This option doesn’t add any new ciphers it
just moves matching existing ones.

If none of these characters is present then the string is just interpreted as a list of ciphers to be
appended to the current preference list. If the list includes any ciphers already present they will be
ignored: that is they will not moved to the end of the list.

Additionally the cipher string@STRENGTH can be used at any point to sort the current cipher list in
order of encryption algorithm key length.

12 2002-12-29 0.9.7c

CIPHERS(1) OpenSSL CIPHERS(1)

CIPHER STRINGS
The following is a list of all permitted cipher strings and their meanings.

DEFAULT
the default cipher list. This is determined at compile time and is normally
ALL: !ADH:RC4+RSA:+SSLv2:@STRENGTH. This must be the first cipher string specified.

COMPLEMENTOFDEFAULT
the ciphers included inALL , but not enabled by default. Currently this isADH . Note that this rule
does not covereNULL, which is not included byALL (useCOMPLEMENTOFALL if necessary).

ALL
all ciphers suites except theeNULL ciphers which must be explicitly enabled.

COMPLEMENTOFALL
the cipher suites not enabled byALL , currently beingeNULL .

HIGH
‘‘high’’ encryption cipher suites. This currently means those with key lengths larger than 128 bits.

MEDIUM
‘‘medium’’ encryption cipher suites, currently those using 128 bit encryption.

LOW
‘‘low’’ encryption cipher suites, currently those using 64 or 56 bit encryption algorithms but
excluding export cipher suites.

EXP, EXPORT
export encryption algorithms. Including 40 and 56 bits algorithms.

EXPORT40
40 bit export encryption algorithms

EXPORT56
56 bit export encryption algorithms.

eNULL , NULL
the ‘‘NULL’’ ciphers that is those offering no encryption. Because these offer no encryption at all
and are a security risk they are disabled unless explicitly included.

aNULL
the cipher suites offering no authentication. This is currently the anonymousDH algorithms. These
cipher suites are vulnerable to a ‘‘man in the middle’’ attack and so their use is normally discour-
aged.

kRSA, RSA
cipher suites usingRSA key exchange.

kEDH
cipher suites using ephemeralDH key agreement.

kDHr , kDHd
cipher suites usingDH key agreement andDH certificates signed by CAs withRSA andDSSkeys
respectively. Not implemented.

aRSA
cipher suites usingRSA authentication, i.e. the certificates carryRSA keys.

aDSS, DSS
cipher suites usingDSSauthentication, i.e. the certificates carryDSSkeys.

aDH
cipher suites effectively usingDH authentication, i.e. the certificates carryDH keys. Not imple-
mented.

kFZA, aFZA, eFZA, FZA
ciphers suites usingFORTEZZA key exchange, authentication, encryption or allFORTEZZA algo-
rithms. Not implemented.

0.9.7c 2002-12-29 13

CIPHERS(1) OpenSSL CIPHERS(1)

TLSv1, SSLv3,SSLv2
TLS v1.0,SSLv3.0 orSSLv2.0 cipher suites respectively.

DH cipher suites usingDH, including anonymousDH.

ADH
anonymousDH cipher suites.

AES
cipher suites usingAES.

3DES
cipher suites using tripleDES.

DES
cipher suites usingDES(not tripleDES).

RC4
cipher suites usingRC4.

RC2
cipher suites usingRC2.

IDEA
cipher suites usingIDEA.

MD5
cipher suites usingMD5.

SHA1, SHA
cipher suites usingSHA1.

CIPHER SUITE NAMES
The following lists give theSSL or TLS cipher suites names from the relevant specification and their
OpenSSL equivalents. It should be noted, that several cipher suite names do not include the authentica-
tion used, e.g.DES−CBC3−SHA. In these cases,RSA authentication is used.

SSL v3.0 cipher suites.

SSL_RSA_WITH_NULL_MD5 NULL-MD5
SSL_RSA_WITH_NULL_SHA NULL-SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
SSL_RSA_WITH_RC4_128_MD5 RC4-MD5
SSL_RSA_WITH_RC4_128_SHA RC4-SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
SSL_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
SSL_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_DES_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_DES_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA

14 2002-12-29 0.9.7c

CIPHERS(1) OpenSSL CIPHERS(1)

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
SSL_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
SSL_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

SSL_FORTEZZA_KEA_WITH_NULL_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_RC4_128_SHA Not implemented.

TLS v1.0 cipher suites.

TLS_RSA_WITH_NULL_MD5 NULL-MD5
TLS_RSA_WITH_NULL_SHA NULL-SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
TLS_RSA_WITH_RC4_128_MD5 RC4-MD5
TLS_RSA_WITH_RC4_128_SHA RC4-SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
TLS_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
TLS_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA

TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_DES_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_DES_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
TLS_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
TLS_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

AES ciphersuites fromRFC3268, extendingTLS v1.0

TLS_RSA_WITH_AES_128_CBC_SHA AES128-SHA
TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA DH-DSS-AES128-SHA
TLS_DH_DSS_WITH_AES_256_CBC_SHA DH-DSS-AES256-SHA
TLS_DH_RSA_WITH_AES_128_CBC_SHA DH-RSA-AES128-SHA
TLS_DH_RSA_WITH_AES_256_CBC_SHA DH-RSA-AES256-SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE-DSS-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE-DSS-AES256-SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA DHE-RSA-AES128-SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE-RSA-AES256-SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA ADH-AES128-SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA ADH-AES256-SHA

0.9.7c 2002-12-29 15

CIPHERS(1) OpenSSL CIPHERS(1)

Additional Export 1024 and other cipher suites

Note: these ciphers can also be used inSSLv3.

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DES-CBC-SHA
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA EXP1024-RC4-SHA
TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DHE-DSS-DES-CBC-SHA
TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA EXP1024-DHE-DSS-RC4-SHA
TLS_DHE_DSS_WITH_RC4_128_SHA DHE-DSS-RC4-SHA

SSL v2.0 cipher suites.

SSL_CK_RC4_128_WITH_MD5 RC4-MD5
SSL_CK_RC4_128_EXPORT40_WITH_MD5 EXP-RC4-MD5
SSL_CK_RC2_128_CBC_WITH_MD5 RC2-MD5
SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5 EXP-RC2-MD5
SSL_CK_IDEA_128_CBC_WITH_MD5 IDEA-CBC-MD5
SSL_CK_DES_64_CBC_WITH_MD5 DES-CBC-MD5
SSL_CK_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5

NOTES
The non-ephemeralDH modes are currently unimplemented in OpenSSL because there is no support
for DH certificates.

Some compiled versions of OpenSSL may not include all the ciphers listed here because some ciphers
were excluded at compile time.

EXAMPLES
Verbose listing of all OpenSSL ciphers includingNULL ciphers:

openssl ciphers -v ’ALL:eNULL’

Include all ciphers exceptNULL and anonymousDH then sort by strength:

openssl ciphers -v ’ALL:!ADH:@STRENGTH’

Include only 3DES ciphers and then placeRSA ciphers last:

openssl ciphers -v ’3DES:+RSA’

Include allRC4ciphers but leave out those without authentication:

openssl ciphers -v ’RC4:!COMPLEMENTOFDEFAULT’

Include all chiphers withRSA authentication but leave out ciphers without encryption.

openssl ciphers -v ’RSA:!COMPLEMENTOFALL’

SEE ALSO
s_client(1), s_server(1), ssl(3)

HISTORY
The COMPLENTOFALL and COMPLEMENTOFDEFAULT selection options were added in version
0.9.7.

16 2002-12-29 0.9.7c

CRL(1) OpenSSL CRL(1)

NAME
crl − CRL utility

SYNOPSIS
openssl crl [−inform PEM DER] [−outform PEMDER] [−text] [−in filename] [−out filename]
[−noout] [−hash] [−issuer] [−lastupdate] [−nextupdate] [−CAfile file] [−CApath dir]

DESCRIPTION
Thecrl command processesCRL files inDER or PEM format.

COMMAND OPTIONS
−inform DER PEM

This specifies the input format.DER format isDER encodedCRL structure.PEM (the default) is a
base64 encoded version of theDER form with header and footer lines.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read from or standard input if this option is not specified.

−out filename
specifies the output filename to write to or standard output by default.

−text
print out theCRL in text form.

−noout
don’t output the encoded version of theCRL.

−hash
output a hash of the issuer name. This can be use to lookup CRLs in a directory by issuer name.

−issuer
output the issuer name.

−lastupdate
output the lastUpdate field.

−nextupdate
output the nextUpdate field.

−CAfile file
verify the signature on aCRL by looking up the issuing certificate infile

−CApath dir
verify the signature on aCRL by looking up the issuing certificate indir . This directory must be a
standard certificate directory: that is a hash of each subject name (usingx509 −hash) should be
linked to each certificate.

NOTES
ThePEM CRLformat uses the header and footer lines:

-----BEGIN X509 CRL-----
-----END X509 CRL-----

EXAMPLES
Convert aCRL file from PEM to DER:

openssl crl -in crl.pem -outform DER -out crl.der

Output the text form of aDER encoded certificate:

openssl crl -in crl.der -text -noout

BUGS
Ideally it should be possible to create aCRL using appropriate options and files too.

0.9.7c 2000-02-08 17

CRL(1) OpenSSL CRL(1)

SEE ALSO
crl2pkcs7(1), ca(1), x509(1)

18 2000-02-08 0.9.7c

CRL2PKCS7(1) OpenSSL CRL2PKCS7(1)

NAME
crl2pkcs7 − Create a PKCS#7 structure from a CRL and certificates.

SYNOPSIS
openssl crl2pkcs7[−inform PEM DER] [−outform PEM DER] [−in filename] [−out filename]
[−certfile filename] [−nocrl]

DESCRIPTION
The crl2pkcs7 command takes an optionalCRL and one or more certificates and converts them into a
PKCS#7 degenerate ‘‘certificates only’’ structure.

COMMAND OPTIONS
−inform DER PEM

This specifies theCRL input format.DER format isDER encodedCRL structure.PEM (the default)
is a base64 encoded version of theDER form with header and footer lines.

−outform DERPEM
This specifies the PKCS#7 structure output format.DER format isDER encoded PKCS#7 struc-
ture.PEM (the default) is a base64 encoded version of theDER form with header and footer lines.

−in filename
This specifies the input filename to read aCRL from or standard input if this option is not speci-
fied.

−out filename
specifies the output filename to write the PKCS#7 structure to or standard output by default.

−certfile filename
specifies a filename containing one or more certificates inPEM format. All certificates in the file
will be added to the PKCS#7 structure. This option can be used more than once to read certificates
form multiple files.

−nocrl
normally aCRL is included in the output file. With this option noCRL is included in the output file
and aCRL is not read from the input file.

EXAMPLES
Create a PKCS#7 structure from a certificate andCRL:

openssl crl2pkcs7 -in crl.pem -certfile cert.pem -out p7.pem

Creates a PKCS#7 structure inDER format with noCRL from several different certificates:

openssl crl2pkcs7 -nocrl -certfile newcert.pem
-certfile demoCA/cacert.pem -outform DER -out p7.der

NOTES
The output file is a PKCS#7 signed data structure containing no signers and just certificates and an
optionalCRL.

This utility can be used to send certificates and CAs to Netscape as part of the certificate enrollment
process. This involves sending theDER encoded output asMIME type application/x−x509−user−cert.

ThePEM encoded form with the header and footer lines removed can be used to install user certificates
and CAs inMSIE using the Xenroll control.

SEE ALSO
pkcs7(1)

0.9.7c 2002-07-09 19

DGST(1) OpenSSL DGST(1)

NAME
dgst, md5, md4, md2, sha1, sha, mdc2, ripemd160 − message digests

SYNOPSIS
openssl dgst [−md5 −md4 −md2−sha1−sha−mdc2 −ripemd160 −dss1] [−c] [−d] [−hex]
[−binary] [−out filename] [−sign filename] [−verify filename] [−prverify filename] [−signature
filename] [file...]

[md5 md4 md2 sha1shamdc2ripemd160] [−c] [−d] [file...]

DESCRIPTION
The digest functions output the message digest of a supplied file or files in hexadecimal form. They can
also be used for digital signing and verification.

OPTIONS
−c print out the digest in two digit groups separated by colons, only relevant ifhex format output is

used.

−d print outBIO debugging information.

−hex
digest is to be output as a hex dump. This is the default case for a ‘‘normal’’ digest as opposed to a
digital signature.

−binary
output the digest or signature in binary form.

−out filename
filename to output to, or standard output by default.

−sign filename
digitally sign the digest using the private key in ‘‘filename’’.

−verify filename
verify the signature using the the public key in ‘‘filename’’. The output is either ‘‘Verification
OK’’ or ‘‘Verification Failure’’.

−prverify filename
verify the signature using the the private key in ‘‘filename’’.

−signature filename
the actual signature to verify.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

file...
file or files to digest. If no files are specified then standard input is used.

NOTES
The digest of choice for all new applications isSHA1. Other digests are however still widely used.

If you wish to sign or verify data using theDSA algorithm then the dss1 digest must be used.

A source of random numbers is required for certain signing algorithms, in particularDSA.

The signing and verify options should only be used if a single file is being signed or verified.

20 2000-09-04 0.9.7c

DHPARAM(1) OpenSSL DHPARAM(1)

NAME
dhparam − DH parameter manipulation and generation

SYNOPSIS
openssl dhparam [−inform DER PEM] [−outform DERPEM] [−in filename] [−out filename]
[−dsaparam] [−noout] [−text] [−C] [−2] [−5] [−rand file(s)] [−engine id] [numbits]

DESCRIPTION
This command is used to manipulateDH parameter files.

OPTIONS
−inform DER PEM

This specifies the input format. TheDER option uses anASN1 DERencoded form compatible with
the PKCS#3 DHparameter structure. ThePEM form is the default format: it consists of theDER
format base64 encoded with additional header and footer lines.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read parameters from or standard input if this option is not
specified.

−out filename
This specifies the output filename parameters to. Standard output is used if this option is not
present. The output filename shouldnot be the same as the input filename.

−dsaparam
If this option is used,DSA rather thanDH parameters are read or created; they are converted toDH
format. Otherwise, ‘‘strong’’ primes (such that (p−1)/2 is also prime) will be used forDH parame-
ter generation.

DH parameter generation with the−dsaparamoption is much faster, and the recommended expo-
nent length is shorter, which makesDH key exchange more efficient. Beware that with such DSA-
style DH parameters, a freshDH key should be created for each use to avoid small-subgroup
attacks that may be possible otherwise.

−2, −5
The generator to use, either 2 or 5. 2 is the default. If present then the input file is ignored and
parameters are generated instead.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

numbits
this option specifies that a parameter set should be generated of sizenumbits. It must be the last
option. If not present then a value of 512 is used. If this option is present then the input file is
ignored and parameters are generated instead.

−noout
this option inhibits the output of the encoded version of the parameters.

−text
this option prints out theDH parameters in human readable form.

−C this option converts the parameters into C code. The parameters can then be loaded by calling the
get_dhnumbits() function.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

0.9.7c 2003-01-30 21

DHPARAM(1) OpenSSL DHPARAM(1)

WARNINGS
The programdhparam combines the functionality of the programsdh andgendh in previous versions
of OpenSSL and SSLeay. Thedh andgendhprograms are retained for now but may have different pur-
poses in future versions of OpenSSL.

NOTES
PEM formatDH parameters use the header and footer lines:

-----BEGIN DH PARAMETERS-----
-----END DH PARAMETERS-----

OpenSSL currently only supports the older PKCS#3DH, not the newer X9.42DH.

This program manipulatesDH parameters not keys.

BUGS
There should be a way to generate and manipulateDH keys.

SEE ALSO
dsaparam(1)

HISTORY
The dhparam command was added in OpenSSL 0.9.5. The−dsaparam option was added in
OpenSSL 0.9.6.

22 2003-01-30 0.9.7c

DSA(1) OpenSSL DSA(1)

NAME
dsa − DSA key processing

SYNOPSIS
openssl dsa[−inform PEM DER] [−outform PEM DER] [−in filename] [−passin arg] [−out file-
name] [−passout arg] [−des] [−des3] [−idea] [−text] [−noout] [−modulus] [−pubin] [−pubout]
[−engine id]

DESCRIPTION
The dsa command processesDSA keys. They can be converted between various forms and their com-
ponents printed out.Note This command uses the traditional SSLeay compatible format for private key
encryption: newer applications should use the more secure PKCS#8 format using thepkcs8

COMMAND OPTIONS
−inform DER PEM

This specifies the input format. TheDER option with a private key uses anASN1 DERencoded
form of anASN.1 SEQUENCEconsisting of the values of version (currently zero), p, q, g, the pub-
lic and private key components respectively asASN.1 INTEGERs. When used with a public key it
uses a SubjectPublicKeyInfo structure: it is an error if the key is notDSA.

ThePEM form is the default format: it consists of theDER format base64 encoded with additional
header and footer lines. In the case of a private key PKCS#8 format is also accepted.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read a key from or standard input if this option is not specified.
If the key is encrypted a pass phrase will be prompted for.

−passin arg
the input file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−out filename
This specifies the output filename to write a key to or standard output by is not specified. If any
encryption options are set then a pass phrase will be prompted for. The output filename shouldnot
be the same as the input filename.

−passout arg
the output file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−des−des3−idea
These options encrypt the private key with theDES, triple DES, or theIDEA ciphers respectively
before outputting it. A pass phrase is prompted for. If none of these options is specified the key is
written in plain text. This means that using thedsa utility to read in an encrypted key with no
encryption option can be used to remove the pass phrase from a key, or by setting the encryption
options it can be use to add or change the pass phrase. These options can only be used withPEM
format output files.

−text
prints out the public, private key components and parameters.

−noout
this option prevents output of the encoded version of the key.

−modulus
this option prints out the value of the public key component of the key.

−pubin
by default a private key is read from the input file: with this option a public key is read instead.

−pubout
by default a private key is output. With this option a public key will be output instead. This option
is automatically set if the input is a public key.

0.9.7c 2003-01-30 23

DSA(1) OpenSSL DSA(1)

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
ThePEM private key format uses the header and footer lines:

-----BEGIN DSA PRIVATE KEY-----
-----END DSA PRIVATE KEY-----

ThePEM public key format uses the header and footer lines:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

EXAMPLES
To remove the pass phrase on aDSA private key:

openssl dsa -in key.pem -out keyout.pem

To encrypt a private key using tripleDES:

openssl dsa -in key.pem -des3 -out keyout.pem

To convert a private key fromPEM to DER format:

openssl dsa -in key.pem -outform DER -out keyout.der

To print out the components of a private key to standard output:

openssl dsa -in key.pem -text -noout

To just output the public part of a private key:

openssl dsa -in key.pem -pubout -out pubkey.pem

SEE ALSO
dsaparam(1), gendsa(1), rsa(1), genrsa(1)

24 2003-01-30 0.9.7c

DSAPARAM(1) OpenSSL DSAPARAM(1)

NAME
dsaparam − DSA parameter manipulation and generation

SYNOPSIS
openssl dsaparam[−inform DER PEM] [−outform DERPEM] [−in filename] [−out filename]
[−noout] [−text] [−C] [−rand file(s)] [−genkey] [−engine id] [numbits]

DESCRIPTION
This command is used to manipulate or generateDSA parameter files.

OPTIONS
−inform DER PEM

This specifies the input format. TheDER option uses anASN1 DERencoded form compatible with
RFC2459(PKIX) DSS-Parms that is aSEQUENCEconsisting of p, q and g respectively. ThePEM
form is the default format: it consists of theDER format base64 encoded with additional header
and footer lines.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read parameters from or standard input if this option is not
specified. If thenumbits parameter is included then this option will be ignored.

−out filename
This specifies the output filename parameters to. Standard output is used if this option is not
present. The output filename shouldnot be the same as the input filename.

−noout
this option inhibits the output of the encoded version of the parameters.

−text
this option prints out theDSA parameters in human readable form.

−C this option converts the parameters into C code. The parameters can then be loaded by calling the
get_dsaXXX() function.

−genkey
this option will generate aDSA either using the specified or generated parameters.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

numbits
this option specifies that a parameter set should be generated of sizenumbits. It must be the last
option. If this option is included then the input file (if any) is ignored.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
PEM formatDSA parameters use the header and footer lines:

-----BEGIN DSA PARAMETERS-----
-----END DSA PARAMETERS-----

DSA parameter generation is a slow process and as a result the same set ofDSA parameters is often
used to generate several distinct keys.

SEE ALSO
gendsa(1), dsa(1), genrsa(1), rsa(1)

0.9.7c 2003-01-30 25

ENC(1) OpenSSL ENC(1)

NAME
enc − symmetric cipher routines

SYNOPSIS
openssl enc −ciphername[−in filename] [−out filename] [−pass arg] [−e] [−d] [−a] [−A] [−k pass-
word] [−kfile filename] [−K key] [−iv IV] [−p] [−P] [−bufsize number] [−nopad] [−debug]

DESCRIPTION
The symmetric cipher commands allow data to be encrypted or decrypted using various block and
stream ciphers using keys based on passwords or explicitly provided. Base64 encoding or decoding can
also be performed either by itself or in addition to the encryption or decryption.

OPTIONS
−in filename

the input filename, standard input by default.

−out filename
the output filename, standard output by default.

−pass arg
the password source. For more information about the format ofarg see thePASS PHRASE ARGU-
MENTS section inopenssl(1).

−salt
use a salt in the key derivation routines. This option shouldALWA YS be used unless compatibility
with previous versions of OpenSSL or SSLeay is required. This option is only present on
OpenSSL versions 0.9.5 or above.

−nosalt
don’t use a salt in the key derivation routines. This is the default for compatibility with previous
versions of OpenSSL and SSLeay.

−e encrypt the input data: this is the default.

−d decrypt the input data.

−a base64 process the data. This means that if encryption is taking place the data is base64 encoded
after encryption. If decryption is set then the input data is base64 decoded before being decrypted.

−A if the −a option is set then base64 process the data on one line.

−k password
the password to derive the key from. This is for compatibility with previous versions of OpenSSL.
Superseded by the−passargument.

−kfile filename
read the password to derive the key from the first line offilename. This is for computability with
previous versions of OpenSSL. Superseded by the−passargument.

−S salt
the actual salt to use: this must be represented as a string comprised only of hex digits.

−K key
the actual key to use: this must be represented as a string comprised only of hex digits. If only the
key is specified, theIV must additionally specified using the−iv option. When both a key and a
password are specified, the key giv en with the−K option will be used and theIV generated from
the password will be taken. It probably does not make much sense to specify both key and pass-
word.

−iv IV
the actualIV to use: this must be represented as a string comprised only of hex digits. When only
the key is specified using the−K option, theIV must explicitly be defined. When a password is
being specified using one of the other options, theIV is generated from this password.

−p print out the key andIV used.

−P print out the key andIV used then immediately exit: don’t do any encryption or decryption.

26 2001-09-07 0.9.7c

ENC(1) OpenSSL ENC(1)

−bufsize number
set the buffer size for I/O

−nopad
disable standard block padding

−debug
debug the BIOs used for I/O.

NOTES
The program can be called either asopenssl ciphernameor openssl enc −ciphername.

A password will be prompted for to derive the key andIV if necessary.

The−salt option shouldALWA YS be used if the key is being derived from a password unless you want
compatibility with previous versions of OpenSSL and SSLeay.

Without the−salt option it is possible to perform efficient dictionary attacks on the password and to
attack stream cipher encrypted data. The reason for this is that without the salt the same password
always generates the same encryption key. When the salt is being used the first eight bytes of the
encrypted data are reserved for the salt: it is generated at random when encrypting a file and read from
the encrypted file when it is decrypted.

Some of the ciphers do not have large keys and others have security implications if not used correctly.
A beginner is advised to just use a strong block cipher inCBC mode such as bf or des3.

All the block ciphers normally use PKCS#5 padding also known as standard block padding: this allows
a rudimentary integrity or password check to be performed. However since the chance of random data
passing the test is better than 1 in 256 it isn’t a very good test.

If padding is disabled then the input data must be a multiple of the cipher block length.

All RC2ciphers have the same key and effective key length.

Blowfish andRC5algorithms use a 128 bit key.

SUPPORTED CIPHERS
base64 Base 64

bf-cbc Blowfish in CBC mode
bf Alias for bf-cbc
bf-cfb Blowfish in CFB mode
bf-ecb Blowfish in ECB mode
bf-ofb Blowfish in OFB mode

cast-cbc CAST in CBC mode
cast Alias for cast-cbc
cast5-cbc CAST5 in CBC mode
cast5-cfb CAST5 in CFB mode
cast5-ecb CAST5 in ECB mode
cast5-ofb CAST5 in OFB mode

des-cbc DES in CBC mode
des Alias for des-cbc
des-cfb DES in CBC mode
des-ofb DES in OFB mode
des-ecb DES in ECB mode

des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Alias for des-ede
des-ede-cfb Two key triple DES EDE in CFB mode
des-ede-ofb Two key triple DES EDE in OFB mode

des-ede3-cbc Three key triple DES EDE in CBC mode
des-ede3 Alias for des-ede3-cbc
des3 Alias for des-ede3-cbc
des-ede3-cfb Three key triple DES EDE CFB mode
des-ede3-ofb Three key triple DES EDE in OFB mode

0.9.7c 2001-09-07 27

ENC(1) OpenSSL ENC(1)

desx DESX algorithm.

idea-cbc IDEA algorithm in CBC mode
idea same as idea-cbc
idea-cfb IDEA in CFB mode
idea-ecb IDEA in ECB mode
idea-ofb IDEA in OFB mode

rc2-cbc 128 bit RC2 in CBC mode
rc2 Alias for rc2-cbc
rc2-cfb 128 bit RC2 in CBC mode
rc2-ecb 128 bit RC2 in CBC mode
rc2-ofb 128 bit RC2 in CBC mode
rc2-64-cbc 64 bit RC2 in CBC mode
rc2-40-cbc 40 bit RC2 in CBC mode

rc4 128 bit RC4
rc4-64 64 bit RC4
rc4-40 40 bit RC4

rc5-cbc RC5 cipher in CBC mode
rc5 Alias for rc5-cbc
rc5-cfb RC5 cipher in CBC mode
rc5-ecb RC5 cipher in CBC mode
rc5-ofb RC5 cipher in CBC mode

EXAMPLES
Just base64 encode a binary file:

openssl base64 -in file.bin -out file.b64

Decode the same file

openssl base64 -d -in file.b64 -out file.bin

Encrypt a file using tripleDESin CBC mode using a prompted password:

openssl des3 -salt -in file.txt -out file.des3

Decrypt a file using a supplied password:

openssl des3 -d -salt -in file.des3 -out file.txt -k mypassword

Encrypt a file then base64 encode it (so it can be sent via mail for example) using Blowfish inCBC
mode:

openssl bf -a -salt -in file.txt -out file.bf

Base64 decode a file then decrypt it:

openssl bf -d -salt -a -in file.bf -out file.txt

Decrypt some data using a supplied 40 bitRC4key:

openssl rc4-40 -in file.rc4 -out file.txt -K 0102030405

BUGS
The−A option when used with large files doesn’t work properly.

There should be an option to allow an iteration count to be included.

Theencprogram only supports a fixed number of algorithms with certain parameters. So if, for exam-
ple, you want to useRC2with a 76 bit key orRC4with an 84 bit key you can’t use this program.

28 2001-09-07 0.9.7c

GENDSA(1) OpenSSL GENDSA(1)

NAME
gendsa − generate a DSA private key from a set of parameters

SYNOPSIS
openssl gendsa[−out filename] [−des] [−des3] [−idea] [−rand file(s)] [−engine id] [paramfile]

DESCRIPTION
Thegendsacommand generates aDSA private key from aDSA parameter file (which will be typically
generated by theopenssl dsaparamcommand).

OPTIONS
−des−des3−idea

These options encrypt the private key with theDES, triple DES, or theIDEA ciphers respectively
before outputting it. A pass phrase is prompted for. If none of these options is specified no
encryption is used.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

paramfile
This option specifies theDSA parameter file to use. The parameters in this file determine the size
of the private key.DSA parameters can be generated and examined using theopenssl dsaparam
command.

NOTES
DSA key generation is little more than random number generation so it is much quicker thatRSA key
generation for example.

SEE ALSO
dsaparam(1), dsa(1), genrsa(1), rsa(1)

0.9.7c 2003-01-30 29

GENRSA(1) OpenSSL GENRSA(1)

NAME
genrsa − generate an RSA private key

SYNOPSIS
openssl genrsa[−out filename] [−passout arg] [−des] [−des3] [−idea] [−f4] [−3] [−rand file(s)]
[−engine id] [numbits]

DESCRIPTION
Thegenrsacommand generates anRSA private key.

OPTIONS
−out filename

the output filename. If this argument is not specified then standard output is used.

−passout arg
the output file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−des−des3−idea
These options encrypt the private key with theDES, triple DES, or theIDEA ciphers respectively
before outputting it. If none of these options is specified no encryption is used. If encryption is
used a pass phrase is prompted for if it is not supplied via the−passoutargument.

−F4 −3
the public exponent to use, either 65537 or 3. The default is 65537.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

numbits
the size of the private key to generate in bits. This must be the last option specified. The default is
512.

NOTES
RSA private key generation essentially involves the generation of two prime numbers. When generating
a private key various symbols will be output to indicate the progress of the generation. A. represents
each number which has passed an initial sieve test,+ means a number has passed a single round of the
Miller-Rabin primality test. A newline means that the number has passed all the prime tests (the actual
number depends on the key size).

Because key generation is a random process the time taken to generate a key may vary somewhat.

BUGS
A quirk of the prime generation algorithm is that it cannot generate small primes. Therefore the number
of bits should not be less that 64. For typical private keys this will not matter because for security rea-
sons they will be much larger (typically 1024 bits).

SEE ALSO
gendsa(1)

30 2003-01-30 0.9.7c

NSEQ(1) OpenSSL NSEQ(1)

NAME
nseq − create or examine a netscape certificate sequence

SYNOPSIS
openssl nseq[−in filename] [−out filename] [−toseq]

DESCRIPTION
Thenseqcommand takes a file containing a Netscape certificate sequence and prints out the certificates
contained in it or takes a file of certificates and converts it into a Netscape certificate sequence.

COMMAND OPTIONS
−in filename

This specifies the input filename to read or standard input if this option is not specified.

−out filename
specifies the output filename or standard output by default.

−toseq
normally a Netscape certificate sequence will be input and the output is the certificates contained
in it. With the−toseqoption the situation is reversed: a Netscape certificate sequence is created
from a file of certificates.

EXAMPLES
Output the certificates in a Netscape certificate sequence

openssl nseq -in nseq.pem -out certs.pem

Create a Netscape certificate sequence

openssl nseq -in certs.pem -toseq -out nseq.pem

NOTES
ThePEM encoded form uses the same headers and footers as a certificate:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

A Netscape certificate sequence is a Netscape specific form that can be sent to browsers as an alterna-
tive to the standard PKCS#7 format when several certificates are sent to the browser: for example dur-
ing certificate enrollment. It is used by Netscape certificate server for example.

BUGS
This program needs a few more options: like allowingDER or PEM input and output files and allowing
multiple certificate files to be used.

0.9.7c 2000-01-21 31

OCSP(1) OpenSSL OCSP(1)

NAME
ocsp − Online Certificate Status Protocol utility

SYNOPSIS
openssl ocsp[−out file] [−issuer file] [−cert file] [−serial n] [−signer file] [−signkey file]
[−sign_other file] [−no_certs] [−req_text] [−resp_text] [−text] [−reqout file] [−respout file] [−reqin
file] [−respin file] [−nonce] [−no_nonce] [−url URL] [−host host:n] [−path] [−CApath dir]
[−CAfile file] [−VAfile file] [−validity_period n] [−status_age n] [−noverify] [−verify_other file]
[−trust_other] [−no_intern] [−no_signature_verify] [−no_cert_verify] [−no_chain]
[−no_cert_checks] [−port num] [−index file] [−CA file] [−rsigner file] [−rkey file] [−rother file]
[−resp_no_certs] [−nmin n] [−ndays n] [−resp_key_id] [−nrequest n]

DESCRIPTION
The Online Certificate Status Protocol (OCSP) enables applications to determine the (revocation) state
of an identified certificate (RFC2560).

The ocsp command performs many commonOCSPtasks. It can be used to print out requests and
responses, create requests and send queries to anOCSPresponder and behave like a miniOCSPserver
itself.

OCSP CLIENT OPTIONS
−out filename

specify output filename, default is standard output.

−issuer filename
This specifies the current issuer certificate. This option can be used multiple times. The certificate
specified infilenamemust be inPEM format.

−cert filename
Add the certificatefilename to the request. The issuer certificate is taken from the previousissuer
option, or an error occurs if no issuer certificate is specified.

−serial num
Same as thecert option except the certificate with serial numbernum is added to the request. The
serial number is interpreted as a decimal integer unless preceded by0x. Neg ative integers can also
be specified by preceding the value by a− sign.

−signer filename,−signkey filename
Sign theOCSPrequest using the certificate specified in thesigneroption and the private key speci-
fied by thesignkey option. If thesignkey option is not present then the private key is read from
the same file as the certificate. If neither option is specified then theOCSPrequest is not signed.

−sign_other filename
Additional certificates to include in the signed request.

−nonce, −no_nonce
Add anOCSPnonce extension to a request or disableOCSPnonce addition. Normally if anOCSP
request is input using therespin option no nonce is added: using thenonceoption will force addi-
tion of a nonce. If anOCSPrequest is being created (usingcert and serial options) a nonce is
automatically added specifyingno_nonceoverrides this.

−req_text, −resp_text,−text
print out the text form of theOCSPrequest, response or both respectively.

−reqout file, −respout file
write out theDER encoded certificate request or response tofile.

−reqin file, −respin file
readOCSPrequest or response file fromfile. These option are ignored ifOCSPrequest or response
creation is implied by other options (for example withserial, cert andhostoptions).

−url responder_url
specify the responderURL. BothHTTP andHTTPS(SSL/TLS) URLs can be specified.

32 2003-03-26 0.9.7c

OCSP(1) OpenSSL OCSP(1)

−host hostname:port, −path pathname
if the host option is present then theOCSPrequest is sent to the hosthostnameon portport . path
specifies theHTTP path name to use or ‘‘/’’ by default.

−CAfile file, −CApath pathname
file or pathname containing trustedCA certificates. These are used to verify the signature on the
OCSPresponse.

−verify_other file
file containing additional certificates to search when attempting to locate theOCSPresponse sign-
ing certificate. Some responders omit the actual signer’s certificate from the response: this option
can be used to supply the necessary certificate in such cases.

−trust_other
the certificates specified by the−verify_certs option should be explicitly trusted and no additional
checks will be performed on them. This is useful when the complete responder certificate chain is
not available or trusting a rootCA is not appropriate.

−VAfile file
file containing explicitly trusted responder certificates. Equivalent to the−verify_certs and
−trust_other options.

−noverify
don’t attempt to verify theOCSPresponse signature or the nonce values. This option will normally
only be used for debugging since it disables all verification of the responders certificate.

−no_intern
ignore certificates contained in theOCSPresponse when searching for the signers certificate. With
this option the signers certificate must be specified with either the−verify_certs or −VAfile
options.

−no_signature_verify
don’t check the signature on theOCSPresponse. Since this option tolerates invalid signatures on
OCSPresponses it will normally only be used for testing purposes.

−no_cert_verify
don’t verify the OCSP response signers certificate at all. Since this option allows theOCSP
response to be signed by any certificate it should only be used for testing purposes.

−no_chain
do not use certificates in the response as additional untrustedCA certificates.

−no_cert_checks
don’t perform any additional checks on theOCSPresponse signers certificate. That is do not make
any checks to see if the signers certificate is authorised to provide the necessary status informa-
tion: as a result this option should only be used for testing purposes.

−validity_period nsec,−status_age age
these options specify the range of times, in seconds, which will be tolerated in anOCSPresponse.
Each certificate status response includes anotBefore time and an optionalnotAfter time. The cur-
rent time should fall between these two values, but the interval between the two times may be only
a few seconds. In practice theOCSPresponder and clients clocks may not be precisely synchro-
nised and so such a check may fail. To avoid this the−validity_period option can be used to spec-
ify an acceptable error range in seconds, the default value is 5 minutes.

If the notAfter time is omitted from a response then this means that new status information is
immediately available. In this case the age of thenotBefore field is checked to see it is not older
thanageseconds old. By default this additional check is not performed.

OCSP SERVER OPTIONS
−index indexfile

indexfile is a text index file inca format containing certificate revocation information.

If the index option is specified theocsputility is in responder mode, otherwise it is in client mode.
The request(s) the responder processes can be either specified on the command line (usingissuer
and serial options), supplied in a file (using therespin option) or via externalOCSPclients (if
port or url is specified).

0.9.7c 2003-03-26 33

OCSP(1) OpenSSL OCSP(1)

If the index option is present then theCA andrsigner options must also be present.

−CA file
CA certificate corresponding to the revocation information inindexfile.

−rsigner file
The certificate to signOCSPresponses with.

−rother file
Additional certificates to include in theOCSPresponse.

−resp_no_certs
Don’t include any certificates in theOCSPresponse.

−resp_key_id
Identify the signer certificate using the keyID, default is to use the subject name.

−rkey file
The private key to signOCSPresponses with: if not present the file specified in thersigner option
is used.

−port portnum
Port to listen forOCSPrequests on. The port may also be specified using theurl option.

−nrequest number
TheOCSPserver will exit after receivingnumber requests, default unlimited.

−nmin minutes,−ndays days
Number of minutes or days when fresh revocation information is available: used in thenextUp-
date field. If neither option is present then thenextUpdatefield is omitted meaning fresh revoca-
tion information is immediately available.

OCSP Response verification.
OCSPResponse follows the rules specified inRFC2560.

Initially the OCSPresponder certificate is located and the signature on theOCSPrequest checked using
the responder certificate’s public key.

Then a normal certificate verify is performed on theOCSPresponder certificate building up a certificate
chain in the process. The locations of the trusted certificates used to build the chain can be specified by
the CAfile andCApath options or they will be looked for in the standard OpenSSL certificates direc-
tory.

If the initial verify fails then theOCSPverify process halts with an error.

Otherwise the issuingCA certificate in the request is compared to theOCSPresponder certificate: if
there is a match then theOCSPverify succeeds.

Otherwise theOCSP responder certificate’sCA is checked against the issuingCA certificate in the
request. If there is a match and the OCSPSigning extended key usage is present in theOCSPresponder
certificate then theOCSPverify succeeds.

Otherwise the rootCA of theOCSPrespondersCA is checked to see if it is trusted forOCSPsigning. If
it is theOCSPverify succeeds.

If none of these checks is successful then theOCSPverify fails.

What this effectively means if that if theOCSPresponder certificate is authorised directly by theCA it
is issuing revocation information about (and it is correctly configured) then verification will succeed.

If the OCSPresponder is a ‘‘global responder’’ which can give details about multiple CAs and has its
own separate certificate chain then its rootCA can be trusted forOCSPsigning. For example:

openssl x509 -in ocspCA.pem -addtrust OCSPSigning -out trustedCA.pem

Alternatively the responder certificate itself can be explicitly trusted with the−VAfile option.

NOTES
As noted, most of the verify options are for testing or debugging purposes. Normally only the−CAp-
ath, −CAfile and (if the responder is a ’globalVA’) −VAfile options need to be used.

The OCSPserver is only useful for test and demonstration purposes: it is not really usable as a full

34 2003-03-26 0.9.7c

OCSP(1) OpenSSL OCSP(1)

OCSPresponder. It contains only a very simpleHTTP request handling and can only handle thePOST
form of OCSPqueries. It also handles requests serially meaning it cannot respond to new requests until
it has processed the current one. The text index file format of revocation is also inefficient for large
quantities of revocation data.

It is possible to run theocsp application in responder mode via aCGI script using therespin and
respoutoptions.

EXAMPLES
Create anOCSPrequest and write it to a file:

openssl ocsp -issuer issuer.pem -cert c1.pem -cert c2.pem -reqout req.der

Send a query to anOCSPresponder withURL http://ocsp.myhost.com/ save the response to a file and
print it out in text form

openssl ocsp -issuer issuer.pem -cert c1.pem -cert c2.pem \
-url http://ocsp.myhost.com/ -resp_text -respout resp.der

Read in anOCSPresponse and print out text form:

openssl ocsp -respin resp.der -text

OCSPserver on port 8888 using a standardca configuration, and a separate responder certificate. All
requests and responses are printed to a file.

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem
-text -out log.txt

As above but exit after processing one request:

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem
-nrequest 1

Query status information using internally generated request:

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem
-issuer demoCA/cacert.pem -serial 1

Query status information using request read from a file, write response to a second file.

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem
-reqin req.der -respout resp.der

0.9.7c 2003-03-26 35

OPENSSL(1) OpenSSL OPENSSL(1)

NAME
openssl − OpenSSL command line tool

SYNOPSIS
opensslcommand[command_opts] [command_args]

openssl[list-standard-commands list-message-digest-commands list-cipher-commands]

openssl no−XXX [arbitrary options]

DESCRIPTION
OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport
Layer Security (TLS v1) network protocols and related cryptography standards required by them.

The openssl program is a command line tool for using the various cryptography functions of
OpenSSL’scrypto library from the shell. It can be used for

o Creation of RSA, DH and DSA key parameters
o Creation of X.509 certificates, CSRs and CRLs
o Calculation of Message Digests
o Encryption and Decryption with Ciphers
o SSL/TLS Client and Server Tests
o Handling of S/MIME signed or encrypted mail

COMMAND SUMMARY
Theopensslprogram provides a rich variety of commands (commandin theSYNOPSISabove), each of
which often has a wealth of options and arguments (command_optsandcommand_argsin theSYNOP-
SIS).

The pseudo-commandslist-standard-commands, list-message-digest-commands, and list-cipher-
commandsoutput a list (one entry per line) of the names of all standard commands, message digest
commands, or cipher commands, respectively, that are available in the presentopensslutility.

The pseudo-commandno−XXX tests whether a command of the specified name is available. If no com-
mand namedXXXexists, it returns 0 (success) and printsno−XXX; otherwise it returns 1 and printsXXX.
In both cases, the output goes tostdout and nothing is printed tostderr. Additional command line
arguments are always ignored. Since for each cipher there is a command of the same name, this pro-
vides an easy way for shell scripts to test for the availability of ciphers in theopensslprogram.
(no−XXX is not able to detect pseudo-commands such asquit , list−...−commands, orno−XXX itself.)

STANDARD COMMANDS

asn1parse Parse anASN.1 sequence.

ca Certificate Authority (CA) Management.

ciphers Cipher Suite Description Determination.

crl Certificate Revocation List (CRL) Management.

crl2pkcs7 CRL to PKCS#7 Conversion.

dgst Message Digest Calculation.

dh Diffie-Hellman Parameter Management. Obsoleted bydhparam.

dsa DSA Data Management.

dsaparam DSA Parameter Generation.

enc Encoding with Ciphers.

errstr Error Number to Error String Conversion.

dhparam Generation and Management of Diffie-Hellman Parameters.

gendh Generation of Diffie-Hellman Parameters. Obsoleted bydhparam.

gendsa Generation ofDSA Parameters.

36 2001-08-08 0.9.7c

OPENSSL(1) OpenSSL OPENSSL(1)

genrsa Generation ofRSA Parameters.

ocsp Online Certificate Status Protocol utility.

passwd Generation of hashed passwords.

pkcs12 PKCS#12 Data Management.

pkcs7 PKCS#7 Data Management.

rand Generate pseudo-random bytes.

req X.509 Certificate Signing Request (CSR) Management.

rsa RSA Data Management.

rsautl RSA utility for signing, verification, encryption, and decryption.

s_client This implements a genericSSL/TLSclient which can establish a transparent connection to
a remote server speakingSSL/TLS. It’s intended for testing purposes only and provides
only rudimentary interface functionality but internally uses mostly all functionality of the
OpenSSLssl library.

s_server This implements a genericSSL/TLSserver which accepts connections from remote clients
speakingSSL/TLS. It’s intended for testing purposes only and provides only rudimentary
interface functionality but internally uses mostly all functionality of the OpenSSLssl
library. It provides both an own command line oriented protocol for testingSSL functions
and a simpleHTTP response facility to emulate an SSL/TLS−aware webserver.

s_time SSLConnection Timer.

sess_id SSLSession Data Management.

smime S/MIME mail processing.

speed Algorithm Speed Measurement.

verify X.509 Certificate Verification.

version OpenSSL Version Information.

x509 X.509 Certificate Data Management.

MESSAGE DIGEST COMMANDS

md2 MD2 Digest

md5 MD5 Digest

mdc2 MDC2 Digest

rmd160 RMD−160Digest

sha SHA Digest

sha1 SHA−1Digest

ENCODING AND CIPHER COMMANDS

base64 Base64 Encoding

bf bf-cbc bf-cfb bf-ecb bf-ofb
Blowfish Cipher

cast cast-cbc
CAST Cipher

cast5−cbc cast5−cfb cast5−ecb cast5−ofb
CAST5Cipher

des des-cbc des-cfb des-ecb des-ede des-ede-cbc des-ede-cfb des-ede-ofb des-ofb
DESCipher

0.9.7c 2001-08-08 37

OPENSSL(1) OpenSSL OPENSSL(1)

des3 desx des−ede3 des−ede3−cbc des−ede3−cfb des−ede3−ofb
Triple-DES Cipher

idea idea-cbc idea-cfb idea-ecb idea-ofb
IDEA Cipher

rc2 rc2−cbc rc2−cfb rc2−ecb rc2−ofb
RC2Cipher

rc4 RC4Cipher

rc5 rc5−cbc rc5−cfb rc5−ecb rc5−ofb
RC5Cipher

PASS PHRASE ARGUMENTS
Several commands accept password arguments, typically using−passin and −passout for input and
output passwords respectively. These allow the password to be obtained from a variety of sources. Both
of these options take a single argument whose format is described below. If no password argument is
given and a password is required then the user is prompted to enter one: this will typically be read from
the current terminal with echoing turned off.

pass:password
the actual password ispassword. Since the password is visible to utilities (like ’ps’ under
Unix) this form should only be used where security is not important.

env:var obtain the password from the environment variablevar. Since the environment of other
processes is visible on certain platforms (e.g. ps under certain Unix OSes) this option
should be used with caution.

file:pathname
the first line ofpathname is the password. If the samepathnameargument is supplied to
−passinand−passoutarguments then the first line will be used for the input password and
the next line for the output password.pathnameneed not refer to a regular file: it could for
example refer to a device or named pipe.

fd:number
read the password from the file descriptornumber. This can be used to send the data via a
pipe for example.

stdin read the password from standard input.

SEE ALSO
asn1parse(1), ca(1), config(5), crl (1), crl2pkcs7(1), dgst(1), dhparam(1), dsa(1), dsaparam(1),
enc(1), gendsa(1), genrsa(1), nseq(1), openssl(1), passwd(1), pkcs12(1), pkcs7(1), pkcs8(1),
rand(1), req(1), rsa(1), rsautl(1), s_client(1), s_server(1), smime(1), spkac(1), verify(1), version(1),
x509(1), crypto(3), ssl(3)

HISTORY
The openssl(1) document appeared in OpenSSL 0.9.2. Thelist−XXX−commandspseudo-commands
were added in OpenSSL 0.9.3; theno−XXX pseudo-commands were added in OpenSSL 0.9.5a. For
notes on the availability of other commands, see their individual manual pages.

38 2001-08-08 0.9.7c

PASSWD(1) OpenSSL PASSWD(1)

NAME
passwd − compute password hashes

SYNOPSIS
openssl passwd[−crypt] [−1] [−apr1] [−salt string] [−in file] [−stdin] [−noverify] [−quiet] [−table]
{password}

DESCRIPTION
Thepasswdcommand computes the hash of a password typed at run-time or the hash of each password
in a list. The password list is taken from the named file for option−in file, from stdin for option
−stdin, or from the command line, or from the terminal otherwise. The Unix standard algorithmcrypt
and the MD5−basedBSD password algorithm1 and its Apache variantapr1 are available.

OPTIONS
−crypt

Use thecrypt algorithm (default).

−1 Use theMD5 basedBSD password algorithm1.

−apr1
Use theapr1 algorithm (Apache variant of theBSD algorithm).

−salt string
Use the specified salt. When reading a password from the terminal, this implies−noverify.

−in file
Read passwords fromfile.

−stdin
Read passwords fromstdin.

−noverify
Don’t verify when reading a password from the terminal.

−quiet
Don’t output warnings when passwords given at the command line are truncated.

−table
In the output list, prepend the cleartext password and aTAB character to each password hash.

EXAMPLES
openssl passwd −crypt −salt xx passwordprintsxxj31ZMTZzkVA .

openssl passwd −1 −salt xxxxxxxx passwordprints1xxxxxxxx$UYCIxa628.9qXjpQCjM4a..

openssl passwd −apr1 −salt xxxxxxxx passwordprints $apr1$xxxxxxxx$dxHfLAsjHk-
DRmG83UXe8K0.

0.9.7c 2002-10-04 39

PKCS12(1) OpenSSL PKCS12(1)

NAME
pkcs12 − PKCS#12 file utility

SYNOPSIS
openssl pkcs12[−export] [−chain] [−inkey filename] [−certfile filename] [−name name] [−caname
name] [−in filename] [−out filename] [−noout] [−nomacver] [−nocerts] [−clcerts] [−cacerts]
[−nokeys] [−info] [−des] [−des3] [−idea] [−nodes] [−noiter] [−maciter] [−twopass] [−descert]
[−certpbe] [−keypbe] [−keyex] [−keysig] [−password arg] [−passin arg] [−passout arg] [−rand
file(s)]

DESCRIPTION
The pkcs12 command allows PKCS#12 files (sometimes referred to asPFX files) to be created and
parsed. PKCS#12 files are used by several programs including Netscape,MSIE andMS Outlook.

COMMAND OPTIONS
There are a lot of options the meaning of some depends of whether a PKCS#12 file is being created or
parsed. By default a PKCS#12 file is parsed a PKCS#12 file can be created by using the−export
option (see below).

PARSING OPTIONS
−in filename

This specifies filename of the PKCS#12 file to be parsed. Standard input is used by default.

−out filename
The filename to write certificates and private keys to, standard output by default. They are all
written inPEM format.

−pass arg,−passin arg
the PKCS#12 file (i.e. input file) password source. For more information about the format ofarg
see thePASS PHRASE ARGUMENTSsection inopenssl(1).

−passout arg
pass phrase source to encrypt any outputed private keys with. For more information about the for-
mat ofarg see thePASS PHRASE ARGUMENTSsection inopenssl(1).

−noout
this option inhibits output of the keys and certificates to the output file version of the PKCS#12
file.

−clcerts
only output client certificates (notCA certificates).

−cacerts
only outputCA certificates (not client certificates).

−nocerts
no certificates at all will be output.

−nokeys
no private keys will be output.

−info
output additional information about the PKCS#12 file structure, algorithms used and iteration
counts.

−des
useDESto encrypt private keys before outputting.

−des3
use tripleDESto encrypt private keys before outputting, this is the default.

−idea
useIDEA to encrypt private keys before outputting.

−nodes
don’t encrypt the private keys at all.

40 2001-09-07 0.9.7c

PKCS12(1) OpenSSL PKCS12(1)

−nomacver
don’t attempt to verify the integrityMAC before reading the file.

−twopass
prompt for separate integrity and encryption passwords: most software always assumes these are
the same so this option will render such PKCS#12 files unreadable.

FILE CREATION OPTIONS
−export

This option specifies that a PKCS#12 file will be created rather than parsed.

−out filename
This specifies filename to write the PKCS#12 file to. Standard output is used by default.

−in filename
The filename to read certificates and private keys from, standard input by default. They must all
be in PEM format. The order doesn’t matter but one private key and its corresponding certificate
should be present. If additional certificates are present they will also be included in the PKCS#12
file.

−inkey filename
file to read private key from. If not present then a private key must be present in the input file.

−name friendlyname
This specifies the ‘‘friendly name’’ for the certificate and private key. This name is typically dis-
played in list boxes by software importing the file.

−certfile filename
A filename to read additional certificates from.

−caname friendlyname
This specifies the ‘‘friendly name’’ for other certificates. This option may be used multiple times
to specify names for all certificates in the order they appear. Netscape ignores friendly names on
other certificates whereasMSIE displays them.

−pass arg,−passout arg
the PKCS#12 file (i.e. output file) password source. For more information about the format ofarg
see thePASS PHRASE ARGUMENTSsection inopenssl(1).

−passin password
pass phrase source to decrypt any input private keys with. For more information about the format
of arg see thePASS PHRASE ARGUMENTSsection inopenssl(1).

−chain
if this option is present then an attempt is made to include the entire certificate chain of the user
certificate. The standardCA store is used for this search. If the search fails it is considered a fatal
error.

−descert
encrypt the certificate using tripleDES, this may render the PKCS#12 file unreadable by some
‘‘export grade’’ software. By default the private key is encrypted using tripleDES and the certifi-
cate using 40 bitRC2.

−keypbe alg,−certpbe alg
these options allow the algorithm used to encrypt the private key and certificates to be selected.
Although any PKCS#5 v1.5 or PKCS#12 algorithms can be selected it is advisable only to use
PKCS#12 algorithms. See the list in theNOTES section for more information.

−keyex−keysig
specifies that the private key is to be used for key exchange or just signing. This option is only
interpreted byMSIE and similarMS software. Normally ‘‘export grade’’ software will only allow
512 bit RSA keys to be used for encryption purposes but arbitrary length keys for signing. The
−keysigoption marks the key for signing only. Signing only keys can be used for S/MIME sign-
ing, authenticode (ActiveX control signing) andSSL client authentication, however due to a bug
only MSIE 5.0 and later support the use of signing only keys forSSLclient authentication.

0.9.7c 2001-09-07 41

PKCS12(1) OpenSSL PKCS12(1)

−nomaciter, −noiter
these options affect the iteration counts on theMAC and key algorithms. Unless you wish to pro-
duce files compatible withMSIE 4.0 you should leave these options alone.

To discourage attacks by using large dictionaries of common passwords the algorithm that derives
keys from passwords can have an iteration count applied to it: this causes a certain part of the
algorithm to be repeated and slows it down. TheMAC is used to check the file integrity but since it
will normally have the same password as the keys and certificates it could also be attacked. By
default bothMAC and encryption iteration counts are set to 2048, using these options theMAC and
encryption iteration counts can be set to 1, since this reduces the file security you should not use
these options unless you really have to. Most software supports bothMAC and key iteration
counts. MSIE 4.0 doesn’t supportMAC iteration counts so it needs the−nomaciter option.

−maciter
This option is included for compatibility with previous versions, it used to be needed to useMAC
iterations counts but they are now used by default.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

NOTES
Although there are a large number of options most of them are very rarely used. For PKCS#12 file
parsing only−in and −out need to be used for PKCS#12 file creation−export and −name are also
used.

If none of the−clcerts, −cacertsor −nocertsoptions are present then all certificates will be output in
the order they appear in the input PKCS#12 files. There is no guarantee that the first certificate present
is the one corresponding to the private key. Certain software which requires a private key and certificate
and assumes the first certificate in the file is the one corresponding to the private key: this may not
always be the case. Using the−clcerts option will solve this problem by only outputting the certificate
corresponding to the private key. If theCA certificates are required then they can be output to a separate
file using the−nokeys −cacertsoptions to just outputCA certificates.

The −keypbe and −certpbe algorithms allow the precise encryption algorithms for private keys and
certificates to be specified. Normally the defaults are fine but occasionally software can’t handle triple
DES encrypted private keys, then the option−keypbe PBE−SHA1−RC2−40can be used to reduce the
private key encryption to 40 bitRC2. A complete description of all algorithms is contained in thepkcs8
manual page.

EXAMPLES
Parse a PKCS#12 file and output it to a file:

openssl pkcs12 -in file.p12 -out file.pem

Output only client certificates to a file:

openssl pkcs12 -in file.p12 -clcerts -out file.pem

Don’t encrypt the private key:

openssl pkcs12 -in file.p12 -out file.pem -nodes

Print some info about a PKCS#12 file:

openssl pkcs12 -in file.p12 -info -noout

Create a PKCS#12 file:

openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate"

Include some extra certificates:

openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate" \
-certfile othercerts.pem

BUGS
Some would argue that the PKCS#12 standard is one big bug :−)

Versions of OpenSSL before 0.9.6a had a bug in the PKCS#12 key generation routines. Under rare

42 2001-09-07 0.9.7c

PKCS12(1) OpenSSL PKCS12(1)

circumstances this could produce a PKCS#12 file encrypted with an invalid key. As a result some
PKCS#12 files which triggered this bug from other implementations (MSIE or Netscape) could not be
decrypted by OpenSSL and similarly OpenSSL could produce PKCS#12 files which could not be
decrypted by other implementations. The chances of producing such a file are relatively small: less than
1 in 256.

A side effect of fixing this bug is that any old invalidly encrypted PKCS#12 files cannot no longer be
parsed by the fixed version. Under such circumstances thepkcs12utility will report that theMAC is OK
but fail with a decryption error when extracting private keys.

This problem can be resolved by extracting the private keys and certificates from the PKCS#12 file
using an older version of OpenSSL and recreating the PKCS#12 file from the keys and certificates
using a newer version of OpenSSL. For example:

old-openssl -in bad.p12 -out keycerts.pem
openssl -in keycerts.pem -export -name "My PKCS#12 file" -out fixed.p12

SEE ALSO
pkcs8(1)

0.9.7c 2001-09-07 43

PKCS7(1) OpenSSL PKCS7(1)

NAME
pkcs7 − PKCS#7 utility

SYNOPSIS
openssl pkcs7[−inform PEMDER] [−outform PEMDER] [−in filename] [−out filename]
[−print_certs] [−text] [−noout] [−engine id]

DESCRIPTION
Thepkcs7command processes PKCS#7 files inDER or PEM format.

COMMAND OPTIONS
−inform DER PEM

This specifies the input format.DER format is DER encoded PKCS#7 v1.5 structure.PEM (the
default) is a base64 encoded version of theDER form with header and footer lines.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read from or standard input if this option is not specified.

−out filename
specifies the output filename to write to or standard output by default.

−print_certs
prints out any certificates or CRLs contained in the file. They are preceded by their subject and
issuer names in one line format.

−text
prints out certificates details in full rather than just subject and issuer names.

−noout
don’t output the encoded version of the PKCS#7 structure (or certificates is−print_certs is set).

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

EXAMPLES
Convert a PKCS#7 file fromPEM to DER:

openssl pkcs7 -in file.pem -outform DER -out file.der

Output all certificates in a file:

openssl pkcs7 -in file.pem -print_certs -out certs.pem

NOTES
ThePEM PKCS#7 format uses the header and footer lines:

-----BEGIN PKCS7-----
-----END PKCS7-----

For compatibility with some CAs it will also accept:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

RESTRICTIONS
There is no option to print out all the fields of a PKCS#7 file.

This PKCS#7 routines only understand PKCS#7 v 1.5 as specified inRFC2315they cannot currently
parse, for example, the newCMS as described inRFC2630.

SEE ALSO
crl2pkcs7(1)

44 2003-01-30 0.9.7c

PKCS8(1) OpenSSL PKCS8(1)

NAME
pkcs8 − PKCS#8 format private key conversion tool

SYNOPSIS
openssl pkcs8[−topk8] [−inform PEM DER] [−outform PEM DER] [−in filename] [−passin arg]
[−out filename] [−passout arg] [−noiter] [−nocrypt] [−nooct] [−embed] [−nsdb] [−v2 alg] [−v1 alg]
[−engine id]

DESCRIPTION
The pkcs8 command processes private keys in PKCS#8 format. It can handle both unencrypted
PKCS#8 PrivateKeyInfo format and EncryptedPrivateKeyInfo format with a variety of PKCS#5 (v1.5
and v2.0) and PKCS#12 algorithms.

COMMAND OPTIONS
−topk8

Normally a PKCS#8 private key is expected on input and a traditional format private key will be
written. With the−topk8 option the situation is reversed: it reads a traditional format private key
and writes a PKCS#8 format key.

−inform DER PEM
This specifies the input format. If a PKCS#8 format key is expected on input then either aDER or
PEM encoded version of a PKCS#8 key will be expected. Otherwise theDER or PEM format of
the traditional format private key is used.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read a key from or standard input if this option is not specified.
If the key is encrypted a pass phrase will be prompted for.

−passin arg
the input file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−out filename
This specifies the output filename to write a key to or standard output by default. If any encryption
options are set then a pass phrase will be prompted for. The output filename shouldnot be the
same as the input filename.

−passout arg
the output file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−nocrypt
PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using
an appropriate password based encryption algorithm. With this option an unencrypted Pri-
vateKeyInfo structure is expected or output. This option does not encrypt private keys at all and
should only be used when absolutely necessary. Certain software such as some versions of Java
code signing software used unencrypted private keys.

−nooct
This option generatesRSA private keys in a broken format that some software uses. Specifically
the private key should be enclosed in aOCTET STRINGbut some software just includes the struc-
ture itself without the surroundingOCTET STRING.

−embed
This option generatesDSA keys in a broken format. TheDSA parameters are embedded inside the
PrivateKey structure. In this form theOCTET STRINGcontains anASN1 SEQUENCEconsisting of
two structures: aSEQUENCEcontaining the parameters and anASN1 INTEGERcontaining the pri-
vate key.

−nsdb
This option generatesDSA keys in a broken format compatible with Netscape private key data-
bases. The PrivateKey contains aSEQUENCE consisting of the public and private keys

0.9.7c 2003-01-30 45

PKCS8(1) OpenSSL PKCS8(1)

respectively.

−v2 alg
This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8 private keys are
encrypted with the password based encryption algorithm calledpbeWithMD5AndDES−CBC
this uses 56 bitDES encryption but it was the strongest encryption algorithm supported in
PKCS#5 v1.5. Using the−v2 option PKCS#5 v2.0 algorithms are used which can use any encryp-
tion algorithm such as 168 bit tripleDES or 128 bitRC2 however not many implementations sup-
port PKCS#5 v2.0 yet. If you are just using private keys with OpenSSL then this doesn’t matter.

Thealg argument is the encryption algorithm to use, valid values includedes, des3andrc2. It is
recommended thatdes3is used.

−v1 alg
This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete list of possible
algorithms is included below.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
The encrypted form of aPEM encode PKCS#8 files uses the following headers and footers:

-----BEGIN ENCRYPTED PRIVATE KEY-----
-----END ENCRYPTED PRIVATE KEY-----

The unencrypted form uses:

-----BEGIN PRIVATE KEY-----
-----END PRIVATE KEY-----

Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that
those encrypted using the traditional SSLeay compatible formats. So if additional security is considered
important the keys should be converted.

The default encryption is only 56 bits because this is the encryption that most current implementations
of PKCS#8 will support.

Some software may use PKCS#12 password based encryption algorithms with PKCS#8 format private
keys: these are handled automatically but there is no option to produce them.

It is possible to write outDER encoded encrypted private keys in PKCS#8 format because the encryp-
tion details are included at anASN1 level whereas the traditional format includes them at aPEM level.

PKCS#5 v1.5 and PKCS#12 algorithms.
Various algorithms can be used with the−v1 command line option, including PKCS#5 v1.5 and
PKCS#12. These are described in more detail below.

PBE−MD2−DES PBE−MD5−DES
These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56
bits of protection since they both useDES.

PBE−SHA1−RC2−64 PBE−MD2−RC2−64 PBE−MD5−RC2−64 PBE−SHA1−DES
These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the
same key derivation algorithm and are supported by some software. They are mentioned in
PKCS#5 v2.0. They use either 64 bitRC2or 56 bitDES.

PBE−SHA1−RC4−128 PBE−SHA1−RC4−40 PBE−SHA1−3DES PBE−SHA1−2DES PBE−SHA1−RC2−128
PBE−SHA1−RC2−40

These algorithms use the PKCS#12 password based encryption algorithm and allow strong
encryption algorithms like tripleDESor 128 bitRC2to be used.

EXAMPLES
Convert a private from traditional to PKCS#5 v2.0 format using tripleDES:

openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm (DES):

46 2003-01-30 0.9.7c

PKCS8(1) OpenSSL PKCS8(1)

openssl pkcs8 -in key.pem -topk8 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES

Read aDER unencrypted PKCS#8 format private key:

openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem

Convert a private key from any PKCS#8 format to traditional format:

openssl pkcs8 -in pk8.pem -out key.pem

STANDARDS
Test vectors from this PKCS#5 v2.0 implementation were posted to the pkcs-tng mailing list using
triple DES, DES andRC2 with high iteration counts, several people confirmed that they could decrypt
the private keys produced and Therefore it can be assumed that the PKCS#5 v2.0 implementation is
reasonably accurate at least as far as these algorithms are concerned.

The format of PKCS#8DSA (and other) private keys is not well documented: it is hidden away in
PKCS#11 v2.01, section 11.9. OpenSSL’s defaultDSA PKCS#8 private key format complies with this
standard.

BUGS
There should be an option that prints out the encryption algorithm in use and other details such as the
iteration count.

PKCS#8 using tripleDESand PKCS#5 v2.0 should be the default private key format for OpenSSL: for
compatibility several of the utilities use the old format at present.

SEE ALSO
dsa(1), rsa(1), genrsa(1), gendsa(1)

0.9.7c 2003-01-30 47

RAND(1) OpenSSL RAND(1)

NAME
rand − generate pseudo−random bytes

SYNOPSIS
openssl rand[−out file] [−rand file(s)] [−base64] num

DESCRIPTION
The rand command outputsnum pseudo-random bytes after seeding the random number generator
once. As in otheropensslcommand line tools,PRNG seeding uses the file$HOME/.rnd or .rnd in
addition to the files given in the−rand option. A new$HOME/.rnd or .rnd file will be written back if
enough seeding was obtained from these sources.

OPTIONS
−out file

Write tofile instead of standard output.

−rand file(s)
Use specified file or files orEGD socket (seeRAND_egd(3)) for seeding the random number gen-
erator. Multiple files can be specified separated by a OS-dependent character. The separator is;
for MS−Windows,, for OpenVMS, and: for all others.

−base64
Perform base64 encoding on the output.

SEE ALSO
RAND_bytes(3)

48 2001-09-07 0.9.7c

REQ(1) OpenSSL REQ(1)

NAME
req − PKCS#10 certificate request and certificate generating utility.

SYNOPSIS
openssl req[−inform PEM DER] [−outform PEMDER] [−in filename] [−passin arg] [−out file-
name] [−passout arg] [−text] [−pubkey] [−noout] [−verify] [−modulus] [−new] [−rand file(s)]
[−newkey rsa:bits] [−newkey dsa:file] [−nodes] [−key filename] [−keyform PEM DER] [−keyout
filename] [−[md5 sha1md2 mdc2]] [−config filename] [−subj arg] [−x509] [−days n] [−set_serial
n] [−asn1−kludge] [−newhdr] [−extensions section] [−reqexts section] [−utf8] [−nameopt]
[−batch] [−verbose] [−engine id]

DESCRIPTION
The req command primarily creates and processes certificate requests in PKCS#10 format. It can addi-
tionally create self signed certificates for use as root CAs for example.

COMMAND OPTIONS
−inform DER PEM

This specifies the input format. TheDER option uses anASN1 DERencoded form compatible with
the PKCS#10. ThePEM form is the default format: it consists of theDER format base64 encoded
with additional header and footer lines.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read a request from or standard input if this option is not speci-
fied. A request is only read if the creation options (−newand−newkey) are not specified.

−passin arg
the input file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−out filename
This specifies the output filename to write to or standard output by default.

−passout arg
the output file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−text
prints out the certificate request in text form.

−pubkey
outputs the public key.

−noout
this option prevents output of the encoded version of the request.

−modulus
this option prints out the value of the modulus of the public key contained in the request.

−verify
verifies the signature on the request.

−new
this option generates a new certificate request. It will prompt the user for the relevant field values.
The actual fields prompted for and their maximum and minimum sizes are specified in the config-
uration file and any requested extensions.

If the −key option is not used it will generate a newRSA private key using information specified in
the configuration file.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

0.9.7c 2003-01-30 49

REQ(1) OpenSSL REQ(1)

−newkey arg
this option creates a new certificate request and a new private key. The argument takes one of two
forms. rsa:nbits, wherenbits is the number of bits, generates anRSA key nbits in size.dsa:file-
namegenerates aDSA key using the parameters in the filefilename.

−key filename
This specifies the file to read the private key from. It also accepts PKCS#8 format private keys for
PEM format files.

−keyform PEM DER
the format of the private key file specified in the−key argument.PEM is the default.

−keyout filename
this gives the filename to write the newly created private key to. If this option is not specified then
the filename present in the configuration file is used.

−nodes
if this option is specified then if a private key is created it will not be encrypted.

−[md5 sha1md2mdc2]
this specifies the message digest to sign the request with. This overrides the digest algorithm spec-
ified in the configuration file. This option is ignored forDSA requests: they always useSHA1.

−config filename
this allows an alternative configuration file to be specified, this overrides the compile time file-
name or any specified in theOPENSSL_CONFenvironment variable.

−subj arg
sets subject name for new request or supersedes the subject name when processing a request. The
arg must be formatted as/type0=value0/type1=value1/type2=..., characters may be escaped by \
(backslash), no spaces are skipped.

−x509
this option outputs a self signed certificate instead of a certificate request. This is typically used to
generate a test certificate or a self signed rootCA. The extensions added to the certificate (if any)
are specified in the configuration file. Unless specified using theset_serialoption 0 will be used
for the serial number.

−days n
when the−x509option is being used this specifies the number of days to certify the certificate for.
The default is 30 days.

−set_serial n
serial number to use when outputting a self signed certificate. This may be specified as a decimal
value or a hex value if preceded by0x. It is possible to use negative serial numbers but this is not
recommended.

−extensions section
−reqexts section

these options specify alternative sections to include certificate extensions (if the−x509 option is
present) or certificate request extensions. This allows several different sections to be used in the
same configuration file to specify requests for a variety of purposes.

−utf8
this option causes field values to be interpreted asUTF8 strings, by default they are interpreted as
ASCII. This means that the field values, whether prompted from a terminal or obtained from a con-
figuration file, must be validUTF8 strings.

−nameopt option
option which determines how the subject or issuer names are displayed. Theoption argument can
be a single option or multiple options separated by commas. Alternatively the−nameoptswitch
may be used more than once to set multiple options. See thex509(1) manual page for details.

−asn1−kludge
by default thereq command outputs certificate requests containing no attributes in the correct
PKCS#10 format. However certain CAs will only accept requests containing no attributes in an
invalid form: this option produces this invalid format.

50 2003-01-30 0.9.7c

REQ(1) OpenSSL REQ(1)

More precisely theAttributes in a PKCS#10 certificate request are defined as aSET OF
Attribute. They arenot OPTIONAL so if no attributes are present then they should be encoded as
an emptySET OF. The invalid form does not include the emptySET OF whereas the correct form
does.

It should be noted that very few CAs still require the use of this option.

−newhdr
Adds the wordNEW to thePEM file header and footer lines on the outputed request. Some soft-
ware (Netscape certificate server) and some CAs need this.

−batch
non-interactive mode.

−verbose
print extra details about the operations being performed.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

CONFIGURATION FILE FORMAT
The configuration options are specified in thereq section of the configuration file. As with all configu-
ration files if no value is specified in the specific section (i.e.req) then the initial unnamed ordefault
section is searched too.

The options available are described in detail below.

input_password output_password
The passwords for the input private key file (if present) and the output private key file (if one will
be created). The command line optionspassinandpassoutoverride the configuration file values.

default_bits
This specifies the default key size in bits. If not specified then 512 is used. It is used if the−new
option is used. It can be overridden by using the−newkeyoption.

default_keyfile
This is the default filename to write a private key to. If not specified the key is written to standard
output. This can be overridden by the−keyout option.

oid_file
This specifies a file containing additionalOBJECT IDENTIFIERS . Each line of the file should
consist of the numerical form of the object identifier followed by white space then the short name
followed by white space and finally the long name.

oid_section
This specifies a section in the configuration file containing extra object identifiers. Each line
should consist of the short name of the object identifier followed by= and the numerical form.
The short and long names are the same when this option is used.

RANDFILE
This specifies a filename in which random number seed information is placed and read from, or an
EGD socket (seeRAND_egd(3)). It is used for private key generation.

encrypt_key
If this is set tono then if a private key is generated it isnot encrypted. This is equivalent to the
−nodescommand line option. For compatibilityencrypt_rsa_keyis an equivalent option.

default_md
This option specifies the digest algorithm to use. Possible values includemd5 sha1 mdc2. If not
present thenMD5 is used. This option can be overridden on the command line.

string_mask
This option masks out the use of certain string types in certain fields. Most users will not need to
change this option.

It can be set to several valuesdefault which is also the default option uses PrintableStrings,
T61Strings and BMPStrings if thepkix value is used then only PrintableStrings and BMPStrings

0.9.7c 2003-01-30 51

REQ(1) OpenSSL REQ(1)

will be used. This follows thePKIX recommendation inRFC2459. If the utf8only option is used
then only UTF8Strings will be used: this is thePKIX recommendation inRFC2459after 2003.
Finally thenombstr option just uses PrintableStrings and T61Strings: certain software has prob-
lems with BMPStrings and UTF8Strings: in particular Netscape.

req_extensions
this specifies the configuration file section containing a list of extensions to add to the certificate
request. It can be overridden by the−reqextscommand line switch.

x509_extensions
this specifies the configuration file section containing a list of extensions to add to certificate gen-
erated when the−x509 switch is used. It can be overridden by the−extensionscommand line
switch.

prompt
if set to the valueno this disables prompting of certificate fields and just takes values from the
config file directly. It also changes the expected format of thedistinguished_nameandattributes
sections.

utf8
if set to the valueyesthen field values to be interpreted asUTF8 strings, by default they are inter-
preted asASCII. This means that the field values, whether prompted from a terminal or obtained
from a configuration file, must be validUTF8 strings.

attributes
this specifies the section containing any request attributes: its format is the same asdistin-
guished_name. Typically these may contain the challengePassword or unstructuredName types.
They are currently ignored by OpenSSL’s request signing utilities but some CAs might want them.

distinguished_name
This specifies the section containing the distinguished name fields to prompt for when generating
a certificate or certificate request. The format is described in the next section.

DISTINGUISHED NAME AND ATTRIBUTE SECTION FORMAT
There are two separate formats for the distinguished name and attribute sections. If theprompt option
is set tono then these sections just consist of field names and values: for example,

CN=My Name
OU=My Organization
emailAddress=someone@somewhere.org

This allows external programs (e.g.GUI based) to generate a template file with all the field names and
values and just pass it toreq. An example of this kind of configuration file is contained in theEXAM-
PLES section.

Alternatively if theprompt option is absent or not set tono then the file contains field prompting infor-
mation. It consists of lines of the form:

fieldName="prompt"
fieldName_default="default field value"
fieldName_min= 2
fieldName_max= 4

‘‘fieldName’’ is the field name being used, for example commonName (orCN). The ‘‘prompt’’ string is
used to ask the user to enter the relevant details. If the user enters nothing then the default value is used
if no default value is present then the field is omitted. A field can still be omitted if a default value is
present if the user just enters the ’.’ character.

The number of characters entered must be between the fieldName_min and fieldName_max limits:
there may be additional restrictions based on the field being used (for example countryName can only
ev er be two characters long and must fit in a PrintableString).

Some fields (such as organizationName) can be used more than once in aDN. This presents a problem
because configuration files will not recognize the same name occurring twice. To avoid this problem if
the fieldName contains some characters followed by a full stop they will be ignored. So for example a
second organizationName can be input by calling it ‘‘1.organizationName’’.

The actual permitted field names are any object identifier short or long names. These are compiled into

52 2003-01-30 0.9.7c

REQ(1) OpenSSL REQ(1)

OpenSSL and include the usual values such as commonName, countryName, localityName, organiza-
tionName, organizationUnitName, stateOrProvinceName. Additionally emailAddress is include as well
as name, surname, givenName initials and dnQualifier.

Additional object identifiers can be defined with theoid_file or oid_sectionoptions in the configuration
file. Any additional fields will be treated as though they were a DirectoryString.

EXAMPLES
Examine and verify certificate request:

openssl req -in req.pem -text -verify -noout

Create a private key and then generate a certificate request from it:

openssl genrsa -out key.pem 1024
openssl req -new -key key.pem -out req.pem

The same but just using req:

openssl req -newkey rsa:1024 -keyout key.pem -out req.pem

Generate a self signed root certificate:

openssl req -x509 -newkey rsa:1024 -keyout key.pem -out req.pem

Example of a file pointed to by theoid_file option:

1.2.3.4 shortName A longer Name
1.2.3.6 otherName Other longer Name

Example of a section pointed to byoid_sectionmaking use of variable expansion:

testoid1=1.2.3.5
testoid2=${testoid1}.6

Sample configuration file prompting for field values:

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca

dirstring_type = nobmp

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
countryName_min = 2
countryName_max = 2

localityName = Locality Name (eg, city)

organizationalUnitName = Organizational Unit Name (eg, section)

commonName = Common Name (eg, YOUR name)
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20

[v3_ca]

subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer:always
basicConstraints = CA:true

Sample configuration containing all field values:

0.9.7c 2003-01-30 53

REQ(1) OpenSSL REQ(1)

RANDFILE = $ENV::HOME/.rnd

[r eq]
default_bits = 1024
default_keyfile = keyfile.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
prompt = no
output_password = mypass

[req_distinguished_name]
C = GB
ST = Test State or Province
L = Test Locality
O = Organization Name
OU = Organizational Unit Name
CN = Common Name
emailAddress = test@email.address

[req_attributes]
challengePassword = A challenge password

NOTES
The header and footer lines in thePEM format are normally:

-----BEGIN CERTIFICATE REQUEST-----
-----END CERTIFICATE REQUEST-----

some software (some versions of Netscape certificate server) instead needs:

-----BEGIN NEW CERTIFICATE REQUEST-----
-----END NEW CERTIFICATE REQUEST-----

which is produced with the−newhdr option but is otherwise compatible. Either form is accepted
transparently on input.

The certificate requests generated byXenroll with MSIE have extensions added. It includes the
keyUsageextension which determines the type of key (signature only or general purpose) and any
additional OIDs entered by the script in an extendedKeyUsage extension.

DIAGNOSTICS
The following messages are frequently asked about:

Using configuration from /some/path/openssl.cnf
Unable to load config info

This is followed some time later by...

unable to find ’distinguished_name’ in config
problems making Certificate Request

The first error message is the clue: it can’t find the configuration file! Certain operations (like examin-
ing a certificate request) don’t need a configuration file so its use isn’t enforced. Generation of certifi-
cates or requests however does need a configuration file. This could be regarded as a bug.

Another puzzling message is this:

Attributes:
a0:00

this is displayed when no attributes are present and the request includes the correct emptySET OF
structure (theDER encoding of which is 0xa0 0x00). If you just see:

Attributes:

then theSET OF is missing and the encoding is technically invalid (but it is tolerated). See the descrip-
tion of the command line option−asn1−kludgefor more information.

ENVIRONMENT VARIABLES
The variableOPENSSL_CONF if defined allows an alternative configuration file location to be speci-
fied, it will be overridden by the−configcommand line switch if it is present. For compatibility reasons

54 2003-01-30 0.9.7c

REQ(1) OpenSSL REQ(1)

theSSLEAY_CONF environment variable serves the same purpose but its use is discouraged.

BUGS
OpenSSL’s handling of T61Strings (aka TeletexStrings) is broken: it effectively treats them as
ISO−8859−1(Latin 1), Netscape andMSIE have similar behaviour. This can cause problems if you need
characters that aren’t available in PrintableStrings and you don’t want to or can’t use BMPStrings.

As a consequence of the T61String handling the only correct way to represent accented characters in
OpenSSL is to use a BMPString: unfortunately Netscape currently chokes on these. If you have to use
accented characters with Netscape andMSIE then you currently need to use the invalid T61String form.

The current prompting is not very friendly. It doesn’t allow you to confirm what you’ve just entered.
Other things like extensions in certificate requests are statically defined in the configuration file. Some
of these: like an email address in subjectAltName should be input by the user.

SEE ALSO
x509(1), ca(1), genrsa(1), gendsa(1), config(5)

0.9.7c 2003-01-30 55

RSA(1) OpenSSL RSA(1)

NAME
rsa − RSA key processing tool

SYNOPSIS
openssl rsa[−inform PEM NETDER] [−outform PEM NET DER] [−in filename] [−passin arg]
[−out filename] [−passout arg] [−sgckey] [−des] [−des3] [−idea] [−text] [−noout] [−modulus]
[−check] [−pubin] [−pubout] [−engine id]

DESCRIPTION
Thersa command processesRSA keys. They can be converted between various forms and their compo-
nents printed out.Note this command uses the traditional SSLeay compatible format for private key
encryption: newer applications should use the more secure PKCS#8 format using thepkcs8utility.

COMMAND OPTIONS
−inform DER NET PEM

This specifies the input format. TheDER option uses anASN1 DERencoded form compatible with
the PKCS#1 RSAPrivateKey or SubjectPublicKeyInfo format. ThePEM form is the default for-
mat: it consists of theDER format base64 encoded with additional header and footer lines. On
input PKCS#8 format private keys are also accepted. TheNET form is a format is described in the
NOTES section.

−outform DERNET PEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read a key from or standard input if this option is not specified.
If the key is encrypted a pass phrase will be prompted for.

−passin arg
the input file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−out filename
This specifies the output filename to write a key to or standard output if this option is not speci-
fied. If any encryption options are set then a pass phrase will be prompted for. The output filename
shouldnot be the same as the input filename.

−passout password
the output file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−sgckey
use the modifiedNET algorithm used with some versions of MicrosoftIIS andSGCkeys.

−des−des3−idea
These options encrypt the private key with theDES, triple DES, or theIDEA ciphers respectively
before outputting it. A pass phrase is prompted for. If none of these options is specified the key is
written in plain text. This means that using thersa utility to read in an encrypted key with no
encryption option can be used to remove the pass phrase from a key, or by setting the encryption
options it can be use to add or change the pass phrase. These options can only be used withPEM
format output files.

−text
prints out the various public or private key components in plain text in addition to the encoded ver-
sion.

−noout
this option prevents output of the encoded version of the key.

−modulus
this option prints out the value of the modulus of the key.

−check
this option checks the consistency of anRSA private key.

56 2003-01-30 0.9.7c

RSA(1) OpenSSL RSA(1)

−pubin
by default a private key is read from the input file: with this option a public key is read instead.

−pubout
by default a private key is output: with this option a public key will be output instead. This option
is automatically set if the input is a public key.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

NOTES
ThePEM private key format uses the header and footer lines:

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

ThePEM public key format uses the header and footer lines:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

TheNET form is a format compatible with older Netscape servers and MicrosoftIIS .key files, this uses
unsaltedRC4for its encryption. It is not very secure and so should only be used when necessary.

Some newer version ofIIS have additional data in the exported .key files. To use these with the utility,
view the file with a binary editor and look for the string ‘‘private−key’’, then trace back to the byte
sequence 0x30, 0x82 (this is anASN1 SEQUENCE). Copy all the data from this point onwards to
another file and use that as the input to thersa utility with the −inform NET option. If you get an error
after entering the password try the−sgckeyoption.

EXAMPLES
To remove the pass phrase on anRSA private key:

openssl rsa -in key.pem -out keyout.pem

To encrypt a private key using tripleDES:

openssl rsa -in key.pem -des3 -out keyout.pem

To convert a private key fromPEM to DER format:

openssl rsa -in key.pem -outform DER -out keyout.der

To print out the components of a private key to standard output:

openssl rsa -in key.pem -text -noout

To just output the public part of a private key:

openssl rsa -in key.pem -pubout -out pubkey.pem

BUGS
The command line password arguments don’t currently work withNET format.

There should be an option that automatically handles .key files, without having to manually edit them.

SEE ALSO
pkcs8(1), dsa(1), genrsa(1), gendsa(1)

0.9.7c 2003-01-30 57

RSAUTL(1) OpenSSL RSAUTL(1)

NAME
rsautl − RSA utility

SYNOPSIS
openssl rsautl [−in file] [−out file] [−inkey file] [−pubin] [−certin] [−sign] [−verify] [−encrypt]
[−decrypt] [−pkcs] [−ssl] [−raw] [−hexdump] [−asn1parse]

DESCRIPTION
Thersautl command can be used to sign, verify, encrypt and decrypt data using theRSA algorithm.

COMMAND OPTIONS
−in filename

This specifies the input filename to read data from or standard input if this option is not specified.

−out filename
specifies the output filename to write to or standard output by default.

−inkey file
the input key file, by default it should be anRSA private key.

−pubin
the input file is anRSA public key.

−certin
the input is a certificate containing anRSA public key.

−sign
sign the input data and output the signed result. This requires andRSA private key.

−verify
verify the input data and output the recovered data.

−encrypt
encrypt the input data using anRSA public key.

−decrypt
decrypt the input data using anRSA private key.

−pkcs, −oaep, −ssl, −raw
the padding to use: PKCS#1 v1.5 (the default), PKCS#1OAEP, special padding used inSSL v2
backwards compatible handshakes, or no padding, respectively. For signatures, only−pkcs and
−raw can be used.

−hexdump
hex dump the output data.

−asn1parse
asn1parse the output data, this is useful when combined with the−verify option.

NOTES
rsautl because it uses theRSA algorithm directly can only be used to sign or verify small pieces of
data.

EXAMPLES
Sign some data using a private key:

openssl rsautl -sign -in file -inkey key.pem -out sig

Recover the signed data

openssl rsautl -verify -in sig -inkey key.pem

Examine the raw signed data:

openssl rsautl -verify -in file -inkey key.pem -raw -hexdump

58 2001-04-25 0.9.7c

RSAUTL(1) OpenSSL RSAUTL(1)

0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff
0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64hello world

The PKCS#1 block formatting is evident from this. If this was done using encrypt and decrypt the
block would have been of type 2 (the second byte) and random padding data visible instead of the 0xff
bytes.

It is possible to analyse the signature of certificates using this utility in conjunction withasn1parse.
Consider the self signed example in certs/pca−cert.pem . Runningasn1parseas follows yields:

openssl asn1parse -in pca-cert.pem

0:d=0 hl=4 l= 742 cons: SEQUENCE
4:d=1 hl=4 l= 591 cons: SEQUENCE
8:d=2 hl=2 l= 3 cons: cont [0]

10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 1 prim: INTEGER :00
16:d=2 hl=2 l= 13 cons: SEQUENCE
18:d=3 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
29:d=3 hl=2 l= 0 prim: NULL
31:d=2 hl=2 l= 92 cons: SEQUENCE
33:d=3 hl=2 l= 11 cons: SET
35:d=4 hl=2 l= 9 cons: SEQUENCE
37:d=5 hl=2 l= 3 prim: OBJECT :countryName
42:d=5 hl=2 l= 2 prim: PRINTABLESTRING :AU

....
599:d=1 hl=2 l= 13 cons: SEQUENCE
601:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
612:d=2 hl=2 l= 0 prim: NULL
614:d=1 hl=3 l= 129 prim: BIT STRING

The finalBIT STRINGcontains the actual signature. It can be extracted with:

openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614

The certificate public key can be extracted with:

openssl x509 -in test/testx509.pem -pubout -noout >pubkey.pem

The signature can be analysed with:

openssl rsautl -in sig -verify -asn1parse -inkey pubkey.pem -pubin

0:d=0 hl=2 l= 32 cons: SEQUENCE
2:d=1 hl=2 l= 12 cons: SEQUENCE
4:d=2 hl=2 l= 8 prim: OBJECT :md5

14:d=2 hl=2 l= 0 prim: NULL
16:d=1 hl=2 l= 16 prim: OCTET STRING

0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5 .F...Js.7...H%..

This is the parsed version of anASN1 DigestInfo structure. It can be seen that the digest used was md5.
The actual part of the certificate that was signed can be extracted with:

openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4

and its digest computed with:

openssl md5 -c tbs
MD5(tbs)= f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5

which it can be seen agrees with the recovered value above.

0.9.7c 2001-04-25 59

RSAUTL(1) OpenSSL RSAUTL(1)

SEE ALSO
dgst(1), rsa(1), genrsa(1)

60 2001-04-25 0.9.7c

S_CLIENT(1) OpenSSL S_CLIENT(1)

NAME
s_client − SSL/TLS client program

SYNOPSIS
openssl s_client[−connecthost:port>] [−verify depth] [−cert filename] [−key filename] [−CApath
directory] [−CAfile filename] [−reconnect] [−pause] [−showcerts] [−debug] [−msg] [−nbio_test]
[−state] [−nbio] [−crlf] [−ign_eof] [−quiet] [−ssl2] [−ssl3] [−tls1] [−no_ssl2] [−no_ssl3] [−no_tls1]
[−bugs] [−cipher cipherlist] [−starttls protocol] [−engine id] [−rand file(s)]

DESCRIPTION
The s_client command implements a genericSSL/TLS client which connects to a remote host using
SSL/TLS. It is a veryuseful diagnostic tool forSSLservers.

OPTIONS
−connect host:port

This specifies the host and optional port to connect to. If not specified then an attempt is made to
connect to the local host on port 4433.

−cert certname
The certificate to use, if one is requested by the server. The default is not to use a certificate.

−key keyfile
The private key to use. If not specified then the certificate file will be used.

−verify depth
The verify depth to use. This specifies the maximum length of the server certificate chain and
turns on server certificate verification. Currently the verify operation continues after errors so all
the problems with a certificate chain can be seen. As a side effect the connection will never fail
due to a server certificate verify failure.

−CApath directory
The directory to use for server certificate verification. This directory must be in ‘‘hash format’’,
seeverify for more information. These are also used when building the client certificate chain.

−CAfile file
A file containing trusted certificates to use during server authentication and to use when attempt-
ing to build the client certificate chain.

−reconnect
reconnects to the same server 5 times using the same sessionID, this can be used as a test that ses-
sion caching is working.

−pause
pauses 1 second between each read and write call.

−showcerts
display the whole server certificate chain: normally only the server certificate itself is displayed.

−prexit
print session information when the program exits. This will always attempt to print out informa-
tion even if the connection fails. Normally information will only be printed out once if the connec-
tion succeeds. This option is useful because the cipher in use may be renegotiated or the connec-
tion may fail because a client certificate is required or is requested only after an attempt is made to
access a certainURL. Note: the output produced by this option is not always accurate because a
connection might never hav e been established.

−state
prints out theSSLsession states.

−debug
print extensive debugging information including a hex dump of all traffic.

−msg
show all protocol messages with hex dump.

0.9.7c 2003-05-28 61

S_CLIENT(1) OpenSSL S_CLIENT(1)

−nbio_test
tests non-blocking I/O

−nbio
turns on non-blocking I/O

−crlf
this option translated a line feed from the terminal intoCR+LF as required by some servers.

−ign_eof
inhibit shutting down the connection when end of file is reached in the input.

−quiet
inhibit printing of session and certificate information. This implicitly turns on−ign_eofas well.

−ssl2,−ssl3,−tls1, −no_ssl2,−no_ssl3, −no_tls1
these options disable the use of certainSSLor TLS protocols. By default the initial handshake uses
a method which should be compatible with all servers and permit them to useSSL v3, SSL v2 or
TLS as appropriate.

Unfortunately there are a lot of ancient and broken servers in use which cannot handle this tech-
nique and will fail to connect. Some servers only work ifTLS is turned off with the−no_tlsoption
others will only supportSSLv2 and may need the−ssl2option.

−bugs
there are several known bug inSSL andTLS implementations. Adding this option enables various
workarounds.

−cipher cipherlist
this allows the cipher list sent by the client to be modified. Although the server determines which
cipher suite is used it should take the first supported cipher in the list sent by the client. See the
cipherscommand for more information.

−starttls protocol
send the protocol-specific message(s) to switch toTLS for communication.protocol is a keyword
for the intended protocol. Currently, the only supported keywords are ‘‘smtp’’ and ‘‘pop3’’.

−engine id
specifying an engine (by it’s uniqueid string) will causes_client to attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

CONNECTED COMMANDS
If a connection is established with anSSLserver then any data received from the server is displayed and
any key presses will be sent to the server. When used interactively (which means neither−quiet nor
−ign_eofhave been given), the session will be renegotiated if the line begins with anR, and if the line
begins with aQ or if end of file is reached, the connection will be closed down.

NOTES
s_clientcan be used to debugSSLservers. To connect to anSSL HTTPserver the command:

openssl s_client -connect servername:443

would typically be used (https uses port 443). If the connection succeeds then anHTTP command can
be given such as ‘‘GET /’’ to retrieve a web page.

If the handshake fails then there are several possible causes, if it is nothing obvious like no client cer-
tificate then the−bugs, −ssl2,−ssl3, −tls1, −no_ssl2, −no_ssl3, −no_tls1 can be tried in case it is a
buggy server. In particular you should play with these optionsbefore submitting a bug report to an
OpenSSL mailing list.

A frequent problem when attempting to get client certificates working is that a web client complains it
has no certificates or gives an empty list to choose from. This is normally because the server is not
sending the clients certificate authority in its ‘‘acceptableCA list’’ when it requests a certificate. By

62 2003-05-28 0.9.7c

S_CLIENT(1) OpenSSL S_CLIENT(1)

using s_client the CA list can be viewed and checked. However some servers only request client
authentication after a specificURL is requested. To obtain the list in this case it is necessary to use the
−prexit command and send anHTTP request for an appropriate page.

If a certificate is specified on the command line using the−cert option it will not be used unless the
server specifically requests a client certificate. Therefor merely including a client certificate on the
command line is no guarantee that the certificate works.

If there are problems verifying a server certificate then the−showcertsoption can be used to show the
whole chain.

BUGS
Because this program has a lot of options and also because some of the techniques used are rather old,
the C source of s_client is rather hard to read and not a model of how things should be done. A typical
SSLclient program would be much simpler.

The−verify option should really exit if the server verification fails.

The−prexit option is a bit of a hack. We should really report information whenever a session is rene-
gotiated.

SEE ALSO
sess_id(1), s_server(1), ciphers(1)

0.9.7c 2003-05-28 63

S_SERVER(1) OpenSSL S_SERVER(1)

NAME
s_server − SSL/TLS server program

SYNOPSIS
openssl s_server[−accept port] [−context id] [−verify depth] [−Verify depth] [−cert filename]
[−key keyfile] [−dcert filename] [−dkey keyfile] [−dhparam filename] [−nbio] [−nbio_test] [−crlf]
[−debug] [−msg] [−state] [−CApath directory] [−CAfile filename] [−nocert] [−cipher cipherlist]
[−quiet] [−no_tmp_rsa] [−ssl2] [−ssl3] [−tls1] [−no_ssl2] [−no_ssl3] [−no_tls1] [−no_dhe] [−bugs]
[−hack] [−www] [−WWW] [−HTTP] [−engine id] [−id_prefix arg] [−rand file(s)]

DESCRIPTION
Thes_servercommand implements a genericSSL/TLSserver which listens for connections on a given
port usingSSL/TLS.

OPTIONS
−accept port

theTCPport to listen on for connections. If not specified 4433 is used.

−context id
sets theSSLcontext id. It can be given any string value. If this option is not present a default value
will be used.

−cert certname
The certificate to use, most servers cipher suites require the use of a certificate and some require a
certificate with a certain public key type: for example theDSS cipher suites require a certificate
containing aDSS(DSA) key. If not specified then the filename ‘‘server.pem’’ will be used.

−key keyfile
The private key to use. If not specified then the certificate file will be used.

−dcert filename, −dkey keyname
specify an additional certificate and private key, these behave in the same manner as the−cert and
−key options except there is no default if they are not specified (no additional certificate and key is
used). As noted above some cipher suites require a certificate containing a key of a certain type.
Some cipher suites need a certificate carrying anRSA key and some aDSS (DSA) key. By using
RSA and DSS certificates and keys a server can support clients which only supportRSA or DSS
cipher suites by using an appropriate certificate.

−nocert
if this option is set then no certificate is used. This restricts the cipher suites available to the
anonymous ones (currently just anonymousDH).

−dhparam filename
the DH parameter file to use. The ephemeralDH cipher suites generate keys using a set ofDH
parameters. If not specified then an attempt is made to load the parameters from the server certifi-
cate file. If this fails then a static set of parameters hard coded into the s_server program will be
used.

−no_dhe
if this option is set then noDH parameters will be loaded effectively disabling the ephemeralDH
cipher suites.

−no_tmp_rsa
certain export cipher suites sometimes use a temporaryRSA key, this option disables temporary
RSA key generation.

−verify depth, −Verify depth
The verify depth to use. This specifies the maximum length of the client certificate chain and
makes the server request a certificate from the client. With the−verify option a certificate is
requested but the client does not have to send one, with the−Verify option the client must supply
a certificate or an error occurs.

−CApath directory
The directory to use for client certificate verification. This directory must be in ‘‘hash format’’, see
verify for more information. These are also used when building the server certificate chain.

64 2003-03-20 0.9.7c

S_SERVER(1) OpenSSL S_SERVER(1)

−CAfile file
A file containing trusted certificates to use during client authentication and to use when attempting
to build the server certificate chain. The list is also used in the list of acceptable client CAs passed
to the client when a certificate is requested.

−state
prints out theSSLsession states.

−debug
print extensive debugging information including a hex dump of all traffic.

−msg
show all protocol messages with hex dump.

−nbio_test
tests non blocking I/O

−nbio
turns on non blocking I/O

−crlf
this option translated a line feed from the terminal intoCR+LF.

−quiet
inhibit printing of session and certificate information.

−ssl2,−ssl3,−tls1, −no_ssl2,−no_ssl3, −no_tls1
these options disable the use of certainSSLor TLS protocols. By default the initial handshake uses
a method which should be compatible with all servers and permit them to useSSL v3, SSL v2 or
TLS as appropriate.

−bugs
there are several known bug inSSL andTLS implementations. Adding this option enables various
workarounds.

−hack
this option enables a further workaround for some some early NetscapeSSLcode (?).

−cipher cipherlist
this allows the cipher list used by the server to be modified. When the client sends a list of sup-
ported ciphers the first client cipher also included in the server list is used. Because the client
specifies the preference order, the order of the server cipherlist irrelevant. See theciphers com-
mand for more information.

−www
sends a status message back to the client when it connects. This includes lots of information about
the ciphers used and various session parameters. The output is inHTML format so this option will
normally be used with a web browser.

−WWW
emulates a simple web server. Pages will be resolved relative to the current directory, for example
if the URL https://myhost/page.html is requested the file ./page.html will be loaded.

−HTTP
emulates a simple web server. Pages will be resolved relative to the current directory, for example
if the URL https://myhost/page.html is requested the file ./page.html will be loaded. The files
loaded are assumed to contain a complete and correctHTTP response (lines that are part of the
HTTP response line and headers must end withCRLF).

−engine id
specifying an engine (by it’s uniqueid string) will causes_serverto attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

−id_prefix arg
generateSSL/TLSsession IDs prefixed byarg. This is mostly useful for testing anySSL/TLScode
(eg. proxies) that wish to deal with multiple servers, when each of which might be generating a
unique range of session IDs (eg. with a certain prefix).

0.9.7c 2003-03-20 65

S_SERVER(1) OpenSSL S_SERVER(1)

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

CONNECTED COMMANDS
If a connection request is established with anSSLclient and neither the−www nor the−WWW option
has been used then normally any data received from the client is displayed and any key presses will be
sent to the client.

Certain single letter commands are also recognized which perform special operations: these are listed
below.

q end the currentSSLconnection but still accept new connections.

Q end the currentSSLconnection and exit.

r renegotiate theSSLsession.

R renegotiate theSSLsession and request a client certificate.

P send some plain text down the underlyingTCP connection: this should cause the client to discon-
nect due to a protocol violation.

S print out some session cache status information.

NOTES
s_servercan be used to debugSSLclients. To accept connections from a web browser the command:

openssl s_server -accept 443 -www

can be used for example.

Most web browsers (in particular Netscape andMSIE) only supportRSA cipher suites, so they cannot
connect to servers which don’t use a certificate carrying anRSA key or a version of OpenSSL withRSA
disabled.

Although specifying an empty list of CAs when requesting a client certificate is strictly speaking a pro-
tocol violation, someSSL clients interpret this to mean anyCA is acceptable. This is useful for debug-
ging purposes.

The session parameters can printed out using thesess_idprogram.

BUGS
Because this program has a lot of options and also because some of the techniques used are rather old,
the C source of s_server is rather hard to read and not a model of how things should be done. A typical
SSLserver program would be much simpler.

The output of common ciphers is wrong: it just gives the list of ciphers that OpenSSL recognizes and
the client supports.

There should be a way for thes_serverprogram to print out details of any unknown cipher suites a
client says it supports.

SEE ALSO
sess_id(1), s_client(1), ciphers(1)

66 2003-03-20 0.9.7c

SESS_ID(1) OpenSSL SESS_ID(1)

NAME
sess_id − SSL/TLS session handling utility

SYNOPSIS
openssl sess_id[−inform PEM DER] [−outform PEM DER] [−in filename] [−out filename]
[−text] [−noout] [−context ID]

DESCRIPTION
Thesess_idprocess the encoded version of theSSLsession structure and optionally prints outSSLses-
sion details (for example theSSLsession master key) in human readable format. Since this is a diagnos-
tic tool that needs some knowledge of theSSLprotocol to use properly, most users will not need to use
it.

−inform DER PEM
This specifies the input format. TheDER option uses anASN1 DER encoded format containing
session details. The precise format can vary from one version to the next. ThePEM form is the
default format: it consists of theDER format base64 encoded with additional header and footer
lines.

−outform DERPEM
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read session information from or standard input by default.

−out filename
This specifies the output filename to write session information to or standard output if this option
is not specified.

−text
prints out the various public or private key components in plain text in addition to the encoded ver-
sion.

−cert
if a certificate is present in the session it will be output using this option, if the−text option is also
present then it will be printed out in text form.

−noout
this option prevents output of the encoded version of the session.

−context ID
this option can set the session id so the output session information uses the suppliedID. The ID
can be any string of characters. This option wont normally be used.

OUTPUT
Typical output:

SSL-Session:
Protocol : TLSv1
Cipher : 0016
Session-ID: 871E62626C554CE95488823752CBD5F3673A3EF3DCE9C67BD916C809914B40ED
Session-ID-ctx: 01000000
Master-Key: A7CEFC571974BE02CAC305269DC59F76EA9F0B180CB6642697A68251F2D2BB57E51DBBB4C7885573192AE9AEE220FACD
Key-Arg : None
Start Time: 948459261
Timeout : 300 (sec)
Verify return code 0 (ok)

Theses are described below in more detail.

Protocol
this is the protocol in use TLSv1, SSLv3 or SSLv2.

Cipher
the cipher used this is the actual rawSSLor TLS cipher code, see theSSLor TLS specifications for
more information.

0.9.7c 2000-02-03 67

SESS_ID(1) OpenSSL SESS_ID(1)

Session-ID
theSSLsessionID in hex format.

Session-ID-ctx
the sessionID context in hex format.

Master-Key
this is theSSLsession master key.

Key-Arg
the key argument, this is only used inSSLv2.

Start Time
this is the session start time represented as an integer in standard Unix format.

Timeout
the timeout in seconds.

Verify return code
this is the return code when anSSLclient certificate is verified.

NOTES
ThePEM encoded session format uses the header and footer lines:

-----BEGIN SSL SESSION PARAMETERS-----
-----END SSL SESSION PARAMETERS-----

Since theSSL session output contains the master key it is possible to read the contents of an encrypted
session using this information. Therefore appropriate security precautions should be taken if the infor-
mation is being output by a ‘‘real’’ application. This is however strongly discouraged and should only
be used for debugging purposes.

BUGS
The cipher and start time should be printed out in human readable form.

SEE ALSO
ciphers(1), s_server(1)

68 2000-02-03 0.9.7c

SMIME(1) OpenSSL SMIME(1)

NAME
smime − S/MIME utility

SYNOPSIS
openssl smime [−encrypt] [−decrypt] [−sign] [−verify] [−pk7out] [−des] [−des3] [−rc2−40]
[−rc2−64] [−rc2−128] [−in file] [−certfile file] [−signer file] [−recip file] [−inform
SMIME PEM DER] [−passin arg] [−inkey file] [−out file] [−outform SMIME PEM DER]
[−content file] [−to addr] [−from ad] [−subject s] [−text] [−rand file(s)] [cert.pem]...

DESCRIPTION
The smime command handles S/MIME mail. It can encrypt, decrypt, sign and verify S/MIME mes-
sages.

COMMAND OPTIONS
There are five operation options that set the type of operation to be performed. The meaning of the
other options varies according to the operation type.

−encrypt
encrypt mail for the given recipient certificates. Input file is the message to be encrypted. The out-
put file is the encrypted mail inMIME format.

−decrypt
decrypt mail using the supplied certificate and private key. Expects an encrypted mail message in
MIME format for the input file. The decrypted mail is written to the output file.

−sign
sign mail using the supplied certificate and private key. Input file is the message to be signed. The
signed message inMIME format is written to the output file.

−verify
verify signed mail. Expects a signed mail message on input and outputs the signed data. Both clear
text and opaque signing is supported.

−pk7out
takes an input message and writes out aPEM encoded PKCS#7 structure.

−in filename
the input message to be encrypted or signed or theMIME message to be decrypted or verified.

−inform SMIME PEM DER
this specifies the input format for the PKCS#7 structure. The default isSMIME which reads an
S/MIME format message.PEM and DER format change this to expectPEM and DER format
PKCS#7 structures instead. This currently only affects the input format of the PKCS#7 structure,
if no PKCS#7 structure is being input (for example with−encrypt or −sign) this option has no
effect.

−out filename
the message text that has been decrypted or verified or the outputMIME format message that has
been signed or verified.

−outform SMIME PEMDER
this specifies the output format for the PKCS#7 structure. The default isSMIME which write an
S/MIME format message.PEM and DER format change this to writePEM and DER format
PKCS#7 structures instead. This currently only affects the output format of the PKCS#7 structure,
if no PKCS#7 structure is being output (for example with−verify or −decrypt) this option has no
effect.

−content filename
This specifies a file containing the detached content, this is only useful with the−verify command.
This is only usable if the PKCS#7 structure is using the detached signature form where the content
is not included. This option will override any content if the input format is S/MIME and it uses the
multipart/signedMIME content type.

−text
this option adds plain text (text/plain)MIME headers to the supplied message if encrypting or sign-
ing. If decrypting or verifying it strips off text headers: if the decrypted or verified message is not

0.9.7c 2002-11-09 69

SMIME(1) OpenSSL SMIME(1)

of MIME type text/plain then an error occurs.

−CAfile file
a file containing trustedCA certificates, only used with−verify.

−CApath dir
a directory containing trustedCA certificates, only used with−verify. This directory must be a
standard certificate directory: that is a hash of each subject name (usingx509 −hash) should be
linked to each certificate.

−des −des3 −rc2−40 −rc2−64 −rc2−128
the encryption algorithm to use.DES (56 bits), tripleDES (168 bits) or 40, 64 or 128 bitRC2
respectively if not specified 40 bitRC2is used. Only used with−encrypt.

−nointern
when verifying a message normally certificates (if any) included in the message are searched for
the signing certificate. With this option only the certificates specified in the−certfile option are
used. The supplied certificates can still be used as untrusted CAs however.

−noverify
do not verify the signers certificate of a signed message.

−nochain
do not do chain verification of signers certificates: that is don’t use the certificates in the signed
message as untrusted CAs.

−nosigs
don’t try to verify the signatures on the message.

−nocerts
when signing a message the signer’s certificate is normally included with this option it is
excluded. This will reduce the size of the signed message but the verifier must have a copy of the
signers certificate available locally (passed using the−certfile option for example).

−noattr
normally when a message is signed a set of attributes are included which include the signing time
and supported symmetric algorithms. With this option they are not included.

−binary
normally the input message is converted to ‘‘canonical’’ format which is effectively usingCR and
LF as end of line: as required by the S/MIME specification. When this option is present no transla-
tion occurs. This is useful when handling binary data which may not be inMIME format.

−nodetach
when signing a message use opaque signing: this form is more resistant to translation by mail
relays but it cannot be read by mail agents that do not support S/MIME. Without this option clear-
text signing with theMIME type multipart/signed is used.

−certfile file
allows additional certificates to be specified. When signing these will be included with the mes-
sage. When verifying these will be searched for the signers certificates. The certificates should be
in PEM format.

−signer file
the signers certificate when signing a message. If a message is being verified then the signers cer-
tificates will be written to this file if the verification was successful.

−recip file
the recipients certificate when decrypting a message. This certificate must match one of the recipi-
ents of the message or an error occurs.

−inkey file
the private key to use when signing or decrypting. This must match the corresponding certificate.
If this option is not specified then the private key must be included in the certificate file specified
with the−recip or −signerfile.

70 2002-11-09 0.9.7c

SMIME(1) OpenSSL SMIME(1)

−passin arg
the private key password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−rand file(s)
a file or files containing random data used to seed the random number generator, or anEGD socket
(seeRAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is; for MS−Windows,, for OpenVMS, and: for all others.

cert.pem...
one or more certificates of message recipients: used when encrypting a message.

−to, −from, −subject
the relevant mail headers. These are included outside the signed portion of a message so they may
be included manually. If signing then many S/MIME mail clients check the signers certificate’s
email address matches that specified in the From: address.

NOTES
The MIME message must be sent without any blank lines between the headers and the output. Some
mail programs will automatically add a blank line. Piping the mail directly to sendmail is one way to
achieve the correct format.

The supplied message to be signed or encrypted must include the necessaryMIME headers or many
S/MIME clients wont display it properly (if at all). You can use the−text option to automatically add
plain text headers.

A ‘‘signed and encrypted’’ message is one where a signed message is then encrypted. This can be pro-
duced by encrypting an already signed message: see the examples section.

This version of the program only allows one signer per message but it will verify multiple signers on
received messages. Some S/MIME clients choke if a message contains multiple signers. It is possible to
sign messages ‘‘in parallel’’ by signing an already signed message.

The options−encrypt and−decrypt reflect common usage in S/MIME clients. Strictly speaking these
process PKCS#7 enveloped data: PKCS#7 encrypted data is used for other purposes.

EXIT CODES
• the operation was completely successfully.

1 an error occurred parsing the command options.

2 one of the input files could not be read.

3 an error occurred creating the PKCS#7 file or when reading theMIME message.

4 an error occurred decrypting or verifying the message.

5 the message was verified correctly but an error occurred writing out the signers certificates.

EXAMPLES
Create a cleartext signed message:

openssl smime -sign -in message.txt -text -out mail.msg \
-signer mycert.pem

Create and opaque signed message

openssl smime -sign -in message.txt -text -out mail.msg -nodetach \
-signer mycert.pem

Create a signed message, include some additional certificates and read the private key from another file:

openssl smime -sign -in in.txt -text -out mail.msg \
-signer mycert.pem -inkey mykey.pem -certfile mycerts.pem

Send a signed message under Unix directly to sendmail, including headers:

openssl smime -sign -in in.txt -text -signer mycert.pem \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed message" sendmail someone@somewhere

Verify a message and extract the signer’s certificate if successful:

0.9.7c 2002-11-09 71

SMIME(1) OpenSSL SMIME(1)

openssl smime -verify -in mail.msg -signer user.pem -out signedtext.txt

Send encrypted mail using tripleDES:

openssl smime -encrypt -in in.txt -from steve@openssl.org \
-to someone@somewhere -subject "Encrypted message" \
-des3 user.pem -out mail.msg

Sign and encrypt mail:

openssl smime -sign -in ml.txt -signer my.pem -text \
 openssl smime -encrypt -out mail.msg \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed and Encrypted message" -des3 user.pem

Note: the encryption command does not include the−text option because the message being encrypted
already hasMIME headers.

Decrypt mail:

openssl smime -decrypt -in mail.msg -recip mycert.pem -inkey key.pem

The output from Netscape form signing is a PKCS#7 structure with the detached signature format. You
can use this program to verify the signature by line wrapping the base64 encoded structure and sur-
rounding it with:

-----BEGIN PKCS7-----
-----END PKCS7-----

and using the command,

openssl smime -verify -inform PEM -in signature.pem -content content.txt

alternatively you can base64 decode the signature and use

openssl smime -verify -inform DER -in signature.der -content content.txt

BUGS
The MIME parser isn’t very clever: it seems to handle most messages that I’ve thrown at it but it may
choke on others.

The code currently will only write out the signer’s certificate to a file: if the signer has a separate
encryption certificate this must be manually extracted. There should be some heuristic that determines
the correct encryption certificate.

Ideally a database should be maintained of a certificates for each email address.

The code doesn’t currently take note of the permitted symmetric encryption algorithms as supplied in
the SMIMECapabilities signed attribute. this means the user has to manually include the correct
encryption algorithm. It should store the list of permitted ciphers in a database and only use those.

No revocation checking is done on the signer’s certificate.

The current code can only handle S/MIME v2 messages, the more complex S/MIME v3 structures may
cause parsing errors.

72 2002-11-09 0.9.7c

SPEED(1) OpenSSL SPEED(1)

NAME
speed − test library performance

SYNOPSIS
openssl speed[−engine id] [md2] [mdc2] [md5] [hmac] [sha1] [rmd160] [idea-cbc] [rc2−cbc]
[rc5−cbc] [bf-cbc] [des-cbc] [des−ede3] [rc4] [rsa512] [rsa1024] [rsa2048] [rsa4096] [dsa512]
[dsa1024] [dsa2048] [idea] [rc2] [des] [rsa] [blowfish]

DESCRIPTION
This command is used to test the performance of cryptographic algorithms.

OPTIONS
−engine id

specifying an engine (by it’s uniqueid string) will causespeedto attempt to obtain a functional
reference to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

[zero or more test algorithms]
If any options are given,speedtests those algorithms, otherwise all of the above are tested.

0.9.7c 2002-11-14 73

SPKAC(1) OpenSSL SPKAC(1)

NAME
spkac − SPKAC printing and generating utility

SYNOPSIS
openssl spkac[−in filename] [−out filename] [−key keyfile] [−passin arg] [−challenge string]
[−pubkey] [−spkac spkacname] [−spksect section] [−noout] [−verify] [−engine id]

DESCRIPTION
The spkac command processes Netscape signed public key and challenge (SPKAC) files. It can print
out their contents, verify the signature and produce its own SPKACs from a supplied private key.

COMMAND OPTIONS
−in filename

This specifies the input filename to read from or standard input if this option is not specified.
Ignored if the−key option is used.

−out filename
specifies the output filename to write to or standard output by default.

−key keyfile
create anSPKAC file using the private key inkeyfile. The −in, −noout, −spksectand −verify
options are ignored if present.

−passin password
the input file password source. For more information about the format ofarg see thePASS
PHRASE ARGUMENTS section inopenssl(1).

−challenge string
specifies the challenge string if anSPKACis being created.

−spkac spkacname
allows an alternative name form the variable containing theSPKAC. The default is ‘‘SPKAC’’. This
option affects both generated and inputSPKACfiles.

−spksect section
allows an alternative name form the section containing theSPKAC. The default is the default sec-
tion.

−noout
don’t output the text version of theSPKAC(not used if anSPKACis being created).

−pubkey
output the public key of anSPKAC(not used if anSPKACis being created).

−verify
verifies the digital signature on the suppliedSPKAC.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

EXAMPLES
Print out the contents of anSPKAC:

openssl spkac -in spkac.cnf

Verify the signature of anSPKAC:

openssl spkac -in spkac.cnf -noout -verify

Create anSPKACusing the challenge string ‘‘hello’’:

openssl spkac -key key.pem -challenge hello -out spkac.cnf

Example of anSPKAC, (long lines split up for clarity):

74 2003-01-30 0.9.7c

SPKAC(1) OpenSSL SPKAC(1)

SPKAC=MIG5MGUwXDANBgkqhkiG9w0BAQEFAANLADBIAkEA1cCoq2Wa3Ixs47uI7F\
PVwHVIPDx5yso105Y6zpozam135a8R0CpoRvkkigIyXfcCjiVi5oWk+6FfPaD03u\
PFoQIDAQABFgVoZWxsbzANBgkqhkiG9w0BAQQFAANBAFpQtY/FojdwkJh1bEIYuc\
2EeM2KHTWPEepWYeawvHD0gQ3DngSC75YCWnnDdq+NQ3F+X4deMx9AaEglZtULwV\
4=

NOTES
A createdSPKACwith suitableDN components appended can be fed into thecautility.

SPKACs are typically generated by Netscape when a form is submitted containing theKEYGEN tag as
part of the certificate enrollment process.

The challenge string permits a primitive form of proof of possession of private key. By checking the
SPKACsignature and a random challenge string some guarantee is given that the user knows the private
key corresponding to the public key being certified. This is important in some applications. Without
this it is possible for a previousSPKACto be used in a ‘‘replay attack’’.

SEE ALSO
ca(1)

0.9.7c 2003-01-30 75

VERIFY(1) OpenSSL VERIFY(1)

NAME
verify − Utility to verify certificates.

SYNOPSIS
openssl verify [−CApath directory] [−CAfile file] [−purpose purpose] [−untrusted file] [−help]
[−issuer_checks] [−verbose] [−] [certificates]

DESCRIPTION
Theverify command verifies certificate chains.

COMMAND OPTIONS
−CApath directory

A directory of trusted certificates. The certificates should have names of the form: hash.0 or have
symbolic links to them of this form (‘‘hash’’ is the hashed certificate subject name: see the−hash
option of thex509 utility). Under Unix thec_rehashscript will automatically create symbolic
links to a directory of certificates.

−CAfile file
A file of trusted certificates. The file should contain multiple certificates inPEM format concate-
nated together.

−untrusted file
A file of untrusted certificates. The file should contain multiple certificates

−purpose purpose
the intended use for the certificate. Without this option no chain verification will be done. Cur-
rently accepted uses aresslclient, sslserver, nssslserver, smimesign, smimeencrypt. See the
VERIFY OPERATION section for more information.

−help
prints out a usage message.

−verbose
print extra information about the operations being performed.

−issuer_checks
print out diagnostics relating to searches for the issuer certificate of the current certificate. This
shows why each candidate issuer certificate was rejected. However the presence of rejection mes-
sages does not itself imply that anything is wrong: during the normal verify process several rejec-
tions may take place.

− marks the last option. All arguments following this are assumed to be certificate files. This is use-
ful if the first certificate filename begins with a−.

certificates
one or more certificates to verify. If no certificate filenames are included then an attempt is made
to read a certificate from standard input. They should all be inPEM format.

VERIFY OPERATION
Theverify program uses the same functions as the internalSSLand S/MIME verification, therefore this
description applies to these verify operations too.

There is one crucial difference between the verify operations performed by theverify program: wher-
ev er possible an attempt is made to continue after an error whereas normally the verify operation would
halt on the first error. This allows all the problems with a certificate chain to be determined.

The verify operation consists of a number of separate steps.

Firstly a certificate chain is built up starting from the supplied certificate and ending in the rootCA. It is
an error if the whole chain cannot be built up. The chain is built up by looking up the issuers certificate
of the current certificate. If a certificate is found which is its own issuer it is assumed to be the rootCA.

The process of ’looking up the issuers certificate’ itself involves a number of steps. In versions of
OpenSSL before 0.9.5a the first certificate whose subject name matched the issuer of the current certifi-
cate was assumed to be the issuers certificate. In OpenSSL 0.9.6 and later all certificates whose subject
name matches the issuer name of the current certificate are subject to further tests. The relevant author-
ity key identifier components of the current certificate (if present) must match the subject key identifier

76 2001-10-08 0.9.7c

VERIFY(1) OpenSSL VERIFY(1)

(if present) and issuer and serial number of the candidate issuer, in addition the keyUsage extension of
the candidate issuer (if present) must permit certificate signing.

The lookup first looks in the list of untrusted certificates and if no match is found the remaining
lookups are from the trusted certificates. The rootCA is always looked up in the trusted certificate list:
if the certificate to verify is a root certificate then an exact match must be found in the trusted list.

The second operation is to check every untrusted certificate’s extensions for consistency with the sup-
plied purpose. If the−purposeoption is not included then no checks are done. The supplied or ‘‘leaf ’’
certificate must have extensions compatible with the supplied purpose and all other certificates must
also be validCA certificates. The precise extensions required are described in more detail in theCER-
TIFICATE EXTENSIONS section of thex509utility.

The third operation is to check the trust settings on the rootCA. The rootCA should be trusted for the
supplied purpose. For compatibility with previous versions of SSLeay and OpenSSL a certificate with
no trust settings is considered to be valid for all purposes.

The final operation is to check the validity of the certificate chain. The validity period is checked
against the current system time and the notBefore and notAfter dates in the certificate. The certificate
signatures are also checked at this point.

If all operations complete successfully then certificate is considered valid. If any operation fails then
the certificate is not valid.

DIAGNOSTICS
When a verify operation fails the output messages can be somewhat cryptic. The general form of the
error message is:

server.pem: /C=AU/ST=Queensland/O=CryptSoft Pty Ltd/CN=Test CA (1024 bit)
error 24 at 1 depth lookup:invalid CA certificate

The first line contains the name of the certificate being verified followed by the subject name of the cer-
tificate. The second line contains the error number and the depth. The depth is number of the certificate
being verified when a problem was detected starting with zero for the certificate being verified itself
then 1 for theCA that signed the certificate and so on. Finally a text version of the error number is pre-
sented.

An exhaustive list of the error codes and messages is shown below, this also includes the name of the
error code as defined in the header file x509_vfy.h Some of the error codes are defined but never
returned: these are described as ‘‘unused’’.

0 X509_V_OK: ok
the operation was successful.

2 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: unable to get issuer certificate
the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certifi-
cate cannot be found.

3 X509_V_ERR_UNABLE_TO_GET_CRL unable to get certificateCRL
theCRL of a certificate could not be found. Unused.

4 X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: unable to decrypt certificate’s
signature

the certificate signature could not be decrypted. This means that the actual signature value could
not be determined rather than it not matching the expected value, this is only meaningful forRSA
keys.

5 X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: unable to decryptCRL’s signa-
ture

the CRL signature could not be decrypted: this means that the actual signature value could not be
determined rather than it not matching the expected value. Unused.

6 X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: unable to decode issuer
public key

the public key in the certificate SubjectPublicKeyInfo could not be read.

0.9.7c 2001-10-08 77

VERIFY(1) OpenSSL VERIFY(1)

7 X509_V_ERR_CERT_SIGNATURE_FAILURE: certificate signature failure
the signature of the certificate is invalid.

8 X509_V_ERR_CRL_SIGNATURE_FAILURE: CRL signature failure
the signature of the certificate is invalid. Unused.

9 X509_V_ERR_CERT_NOT_YET_VALID: certificate is not yet valid
the certificate is not yet valid: the notBefore date is after the current time.

10 X509_V_ERR_CERT_HAS_EXPIRED: certificate has expired
the certificate has expired: that is the notAfter date is before the current time.

11 X509_V_ERR_CRL_NOT_YET_VALID: CRL is not yet valid
theCRL is not yet valid. Unused.

12 X509_V_ERR_CRL_HAS_EXPIRED:CRL has expired
theCRL has expired. Unused.

13 X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: format error in certificate’s not-
Before field

the certificate notBefore field contains an invalid time.

14 X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: format error in certificate’s
notAfter field

the certificate notAfter field contains an invalid time.

15 X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: format error in CRL’s lastUp-
date field

theCRL lastUpdate field contains an invalid time. Unused.

16 X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: format error in CRL’s nextUp-
date field

theCRL nextUpdate field contains an invalid time. Unused.

17 X509_V_ERR_OUT_OF_MEM: out of memory
an error occurred trying to allocate memory. This should never happen.

18 X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: self signed certificate
the passed certificate is self signed and the same certificate cannot be found in the list of trusted
certificates.

19 X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: self signed certificate in certificate chain
the certificate chain could be built up using the untrusted certificates but the root could not be
found locally.

20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local issuer
certificate

the issuer certificate of a locally looked up certificate could not be found. This normally means the
list of trusted certificates is not complete.

21 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: unable to verify the first cer-
tificate

no signatures could be verified because the chain contains only one certificate and it is not self
signed.

22 X509_V_ERR_CERT_CHAIN_TOO_LONG: certificate chain too long
the certificate chain length is greater than the supplied maximum depth. Unused.

23 X509_V_ERR_CERT_REVOKED: certificate rev oked
the certificate has been revoked. Unused.

24 X509_V_ERR_INVALID_CA: invalid CA certificate
a CA certificate is invalid. Either it is not aCA or its extensions are not consistent with the sup-
plied purpose.

25 X509_V_ERR_PATH_LENGTH_EXCEEDED: path length constraint exceeded
the basicConstraints pathlength parameter has been exceeded.

78 2001-10-08 0.9.7c

VERIFY(1) OpenSSL VERIFY(1)

26 X509_V_ERR_INVALID_PURPOSE: unsupported certificate purpose
the supplied certificate cannot be used for the specified purpose.

27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted
the rootCA is not marked as trusted for the specified purpose.

28 X509_V_ERR_CERT_REJECTED: certificate rejected
the rootCA is marked to reject the specified purpose.

29 X509_V_ERR_SUBJECT_ISSUER_MISMATCH: subject issuer mismatch
the current candidate issuer certificate was rejected because its subject name did not match the
issuer name of the current certificate. Only displayed when the−issuer_checksoption is set.

30 X509_V_ERR_AKID_SKID_MISMATCH: authority and subject key identifier mismatch
the current candidate issuer certificate was rejected because its subject key identifier was present
and did not match the authority key identifier current certificate. Only displayed when the
−issuer_checksoption is set.

31 X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: authority and issuer serial number
mismatch

the current candidate issuer certificate was rejected because its issuer name and serial number was
present and did not match the authority key identifier of the current certificate. Only displayed
when the−issuer_checksoption is set.

32 X509_V_ERR_KEYUSAGE_NO_CERTSIGN:key usage does not include certificate signing
the current candidate issuer certificate was rejected because its keyUsage extension does not per-
mit certificate signing.

50 X509_V_ERR_APPLICATION_VERIFICATION: application verification failure
an application specific error. Unused.

BUGS
Although the issuer checks are a considerably improvement over the old technique they still suffer from
limitations in the underlying X509_LOOKUPAPI. One consequence of this is that trusted certificates
with matching subject name must either appear in a file (as specified by the−CAfile option) or a direc-
tory (as specified by−CApath. If they occur in both then only the certificates in the file will be recog-
nised.

Previous versions of OpenSSL assume certificates with matching subject name are identical and mis-
handled them.

SEE ALSO
x509(1)

0.9.7c 2001-10-08 79

VERSION(1) OpenSSL VERSION(1)

NAME
version − print OpenSSL version information

SYNOPSIS
openssl version[−a] [−v] [−b] [−o] [−f] [−p]

DESCRIPTION
This command is used to print out version information about OpenSSL.

OPTIONS
−a all information, this is the same as setting all the other flags.

−v the current OpenSSL version.

−b the date the current version of OpenSSL was built.

−o option information: various options set when the library was built.

−c compilation flags.

−p platform setting.

−d OPENSSLDIRsetting.

NOTES
The output ofopenssl version −awould typically be used when sending in a bug report.

HISTORY
The−d option was added in OpenSSL 0.9.7.

80 2002-01-04 0.9.7c

X509(1) OpenSSL X509(1)

NAME
x509 − Certificate display and signing utility

SYNOPSIS
openssl x509[−inform DER PEMNET] [−outform DERPEM NET] [−keyform DERPEM]
[−CAform DER PEM] [−CAkeyform DERPEM] [−in filename] [−out filename] [−serial]
[−hash] [−subject] [−issuer] [−nameopt option] [−email] [−startdate] [−enddate] [−purpose]
[−dates] [−modulus] [−fingerprint] [−alias] [−noout] [−trustout] [−clrtrust] [−clrreject]
[−addtrust arg] [−addreject arg] [−setalias arg] [−days arg] [−set_serial n] [−signkey filename]
[−x509toreq] [−req] [−CA filename] [−CAkey filename] [−CAcreateserial] [−CAserial filename]
[−text] [−C] [−md2 −md5 −sha1−mdc2] [−clrext] [−extfile filename] [−extensions section]
[−engine id]

DESCRIPTION
The x509 command is a multi purpose certificate utility. It can be used to display certificate informa-
tion, convert certificates to various forms, sign certificate requests like a ‘‘miniCA’’ or edit certificate
trust settings.

Since there are a large number of options they will split up into various sections.

OPTIONS
INPUT, OUTPUT AND GENERAL PURPOSE OPTIONS

−inform DER PEMNET
This specifies the input format normally the command will expect an X509 certificate but this can
change if other options such as−req are present. TheDER format is theDER encoding of the cer-
tificate andPEM is the base64 encoding of theDER encoding with header and footer lines added.
TheNET option is an obscure Netscape server format that is now obsolete.

−outform DERPEM NET
This specifies the output format, the options have the same meaning as the−inform option.

−in filename
This specifies the input filename to read a certificate from or standard input if this option is not
specified.

−out filename
This specifies the output filename to write to or standard output by default.

−md2 −md5 −sha1−mdc2
the digest to use. This affects any signing or display option that uses a message digest, such as the
−fingerprint , −signkeyand−CA options. If not specified thenMD5 is used. If the key being used
to sign with is aDSA key then this option has no effect:SHA1 is always used withDSA keys.

−engine id
specifying an engine (by it’s uniqueid string) will causereq to attempt to obtain a functional ref-
erence to the specified engine, thus initialising it if needed. The engine will then be set as the
default for all available algorithms.

DISPLAY OPTIONS

Note: the−alias and−purpose options are also display options but are described in theTRUST SET-
TINGS section.

−text
prints out the certificate in text form. Full details are output including the public key, signature
algorithms, issuer and subject names, serial number any extensions present and any trust settings.

−certopt option
customise the output format used with−text. Theoption argument can be a single option or multi-
ple options separated by commas. The−certopt switch may be also be used more than once to set
multiple options. See theTEXT OPTIONS section for more information.

0.9.7c 2003-01-30 81

X509(1) OpenSSL X509(1)

−noout
this option prevents output of the encoded version of the request.

−modulus
this option prints out the value of the modulus of the public key contained in the certificate.

−serial
outputs the certificate serial number.

−hash
outputs the ‘‘hash’’ of the certificate subject name. This is used in OpenSSL to form an index to
allow certificates in a directory to be looked up by subject name.

−subject
outputs the subject name.

−issuer
outputs the issuer name.

−nameopt option
option which determines how the subject or issuer names are displayed. Theoption argument can
be a single option or multiple options separated by commas. Alternatively the−nameoptswitch
may be used more than once to set multiple options. See theNAME OPTIONS section for more
information.

−email
outputs the email address(es) if any.

−startdate
prints out the start date of the certificate, that is the notBefore date.

−enddate
prints out the expiry date of the certificate, that is the notAfter date.

−dates
prints out the start and expiry dates of a certificate.

−fingerprint
prints out the digest of theDER encoded version of the whole certificate (see digest options).

−C this outputs the certificate in the form of a C source file.

TRUST SETTINGS

Please note these options are currently experimental and may well change.

A trusted certificate is an ordinary certificate which has several additional pieces of information
attached to it such as the permitted and prohibited uses of the certificate and an ‘‘alias’’.

Normally when a certificate is being verified at least one certificate must be ‘‘trusted’’. By default a
trusted certificate must be stored locally and must be a rootCA: any certificate chain ending in thisCA
is then usable for any purpose.

Trust settings currently are only used with a rootCA. They allow a finer control over the purposes the
root CA can be used for. For example aCA may be trusted forSSLclient but notSSLserver use.

See the description of theverify utility for more information on the meaning of trust settings.

Future versions of OpenSSL will recognize trust settings on any certificate: not just root CAs.

−trustout
this causesx509 to output atrusted certificate. An ordinary or trusted certificate can be input but
by default an ordinary certificate is output and any trust settings are discarded. With the−trustout
option a trusted certificate is output. A trusted certificate is automatically output if any trust set-
tings are modified.

−setalias arg
sets the alias of the certificate. This will allow the certificate to be referred to using a nickname for
example ‘‘Steve’s Certificate’’.

82 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

−alias
outputs the certificate alias, if any.

−clrtrust
clears all the permitted or trusted uses of the certificate.

−clrreject
clears all the prohibited or rejected uses of the certificate.

−addtrust arg
adds a trusted certificate use. Any object name can be used here but currently onlyclientAuth
(SSL client use),serverAuth (SSL server use) andemailProtection (S/MIME email) are used.
Other OpenSSL applications may define additional uses.

−addreject arg
adds a prohibited use. It accepts the same values as the−addtrust option.

−purpose
this option performs tests on the certificate extensions and outputs the results. For a more complete
description see theCERTIFICATE EXTENSIONS section.

SIGNING OPTIONS

Thex509utility can be used to sign certificates and requests: it can thus behave like a ‘‘miniCA’’.

−signkey filename
this option causes the input file to be self signed using the supplied private key.

If the input file is a certificate it sets the issuer name to the subject name (i.e. makes it self signed)
changes the public key to the supplied value and changes the start and end dates. The start date is
set to the current time and the end date is set to a value determined by the−daysoption. Any cer-
tificate extensions are retained unless the−clrext option is supplied.

If the input is a certificate request then a self signed certificate is created using the supplied private
key using the subject name in the request.

−clrext
delete any extensions from a certificate. This option is used when a certificate is being created
from another certificate (for example with the−signkeyor the−CA options). Normally all exten-
sions are retained.

−keyform PEM DER
specifies the format (DER or PEM) of the private key file used in the−signkeyoption.

−days arg
specifies the number of days to make a certificate valid for. The default is 30 days.

−x509toreq
converts a certificate into a certificate request. The−signkey option is used to pass the required
private key.

−req
by default a certificate is expected on input. With this option a certificate request is expected
instead.

−set_serial n
specifies the serial number to use. This option can be used with either the−signkey or −CA
options. If used in conjunction with the−CA option the serial number file (as specified by the
−CAserial or −CAcreateserialoptions) is not used.

The serial number can be decimal or hex (if preceded by0x). Negative serial numbers can also be
specified but their use is not recommended.

−CA filename
specifies theCA certificate to be used for signing. When this option is presentx509behaves like a
‘‘mini CA’’. The input file is signed by thisCA using this option: that is its issuer name is set to the
subject name of theCA and it is digitally signed using the CAs private key.

This option is normally combined with the−req option. Without the−req option the input is a

0.9.7c 2003-01-30 83

X509(1) OpenSSL X509(1)

certificate which must be self signed.

−CAkey filename
sets theCA private key to sign a certificate with. If this option is not specified then it is assumed
that theCA private key is present in theCA certificate file.

−CAserial filename
sets theCA serial number file to use.

When the−CA option is used to sign a certificate it uses a serial number specified in a file. This
file consist of one line containing an even number of hex digits with the serial number to use.
After each use the serial number is incremented and written out to the file again.

The default filename consists of theCA certificate file base name with ‘‘.srl’’ appended. For exam-
ple if theCA certificate file is called ‘‘mycacert.pem’’ it expects to find a serial number file called
‘‘mycacert.srl’’.

−CAcreateserial
with this option theCA serial number file is created if it does not exist: it will contain the serial
number ‘‘02’’ and the certificate being signed will have the 1 as its serial number. Normally if the
−CA option is specified and the serial number file does not exist it is an error.

−extfile filename
file containing certificate extensions to use. If not specified then no extensions are added to the
certificate.

−extensions section
the section to add certificate extensions from. If this option is not specified then the extensions
should either be contained in the unnamed (default) section or the default section should contain a
variable called ‘‘extensions’’ which contains the section to use.

NAME OPTIONS

The nameopt command line switch determines how the subject and issuer names are displayed. If no
nameoptswitch is present the default ‘‘oneline’’ format is used which is compatible with previous ver-
sions of OpenSSL. Each option is described in detail below, all options can be preceded by a− to turn
the option off. Only the first four will normally be used.

compat
use the old format. This is equivalent to specifying no name options at all.

RFC2253
displays names compatible withRFC2253 equivalent toesc_2253, esc_ctrl, esc_msb, utf8,
dump_nostr, dump_unknown, dump_der, sep_comma_plus, dn_rev andsname.

oneline
a oneline format which is more readable thanRFC2253. It is equivalent to specifying the
esc_2253,esc_ctrl,esc_msb,utf8, dump_nostr, dump_der, use_quote, sep_comma_plus_spc,
spc_eqandsnameoptions.

multiline
a multiline format. It is equivalentesc_ctrl,esc_msb, sep_multiline, spc_eq, lnameandalign.

esc_2253
escape the ‘‘special’’ characters required byRFC2253in a field That is,+"<>;. Additionally # is
escaped at the beginning of a string and a space character at the beginning or end of a string.

esc_ctrl
escape control characters. That is those withASCII values less than 0x20 (space) and the delete
(0x7f) character. They are escaped using theRFC2253\XX notation (whereXX are two hex digits
representing the character value).

esc_msb
escape characters with theMSB set, that is withASCII values larger than 127.

use_quote
escapes some characters by surrounding the whole string with" characters, without the option all
escaping is done with the\ character.

84 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

utf8
convert all strings toUTF8 format first. This is required byRFC2253. If you are lucky enough to
have aUTF8 compatible terminal then the use of this option (andnot settingesc_msb) may result
in the correct display of multibyte (international) characters. Is this option is not present then
multibyte characters larger than 0xff will be represented using the format \UXXXX for 16 bits and
\WXXXXXXXX for 32 bits. Also if this option is off any UTF8Strings will be converted to their
character form first.

no_type
this option does not attempt to interpret multibyte characters in any way. That is their content
octets are merely dumped as though one octet represents each character. This is useful for diag-
nostic purposes but will result in rather odd looking output.

show_type
show the type of theASN1 character string. The type precedes the field contents. For example
‘‘ BMPSTRING:Hello World’’.

dump_der
when this option is set any fields that need to be hexdumped will be dumped using theDER encod-
ing of the field. Otherwise just the content octets will be displayed. Both options use theRFC2253
#XXXX... format.

dump_nostr
dump non character string types (for exampleOCTET STRING) if this option is not set then non
character string types will be displayed as though each content octet represents a single character.

dump_all
dump all fields. This option when used withdump_der allows theDER encoding of the structure
to be unambiguously determined.

dump_unknown
dump any field whoseOID is not recognised by OpenSSL.

sep_comma_plus,sep_comma_plus_space, sep_semi_plus_space, sep_multiline
these options determine the field separators. The first character is between RDNs and the second
between multiple AVAs (multiple AVAs are very rare and their use is discouraged). The options
ending in ‘‘space’’ additionally place a space after the separator to make it more readable. The
sep_multiline uses a linefeed character for theRDN separator and a spaced+ for theAVA separa-
tor. It also indents the fields by four characters.

dn_rev
reverse the fields of theDN. This is required byRFC2253. As a side effect this also reverses the
order of multiple AVAs but this is permissible.

nofname,sname,lname,oid
these options alter how the field name is displayed.nofname does not display the field at all.
snameuses the ‘‘short name’’ form (CN for commonName for example).lname uses the long
form. oid represents theOID in numerical form and is useful for diagnostic purpose.

align
align field values for a more readable output. Only usable withsep_multiline.

spc_eq
places spaces round the= character which follows the field name.

TEXT OPTIONS

As well as customising the name output format, it is also possible to customise the actual fields printed
using thecertopt options when thetext option is present. The default behaviour is to print all fields.

compatible
use the old format. This is equivalent to specifying no output options at all.

no_header
don’t print header information: that is the lines saying ‘‘Certificate’’ and ‘‘Data’’.

0.9.7c 2003-01-30 85

X509(1) OpenSSL X509(1)

no_version
don’t print out the version number.

no_serial
don’t print out the serial number.

no_signame
don’t print out the signature algorithm used.

no_validity
don’t print the validity, that is thenotBeforeandnotAfter fields.

no_subject
don’t print out the subject name.

no_issuer
don’t print out the issuer name.

no_pubkey
don’t print out the public key.

no_sigdump
don’t giv e a hexadecimal dump of the certificate signature.

no_aux
don’t print out certificate trust information.

no_extensions
don’t print out any X509V3 extensions.

ext_default
retain default extension behaviour: attempt to print out unsupported certificate extensions.

ext_error
print an error message for unsupported certificate extensions.

ext_parse
ASN1 parse unsupported extensions.

ext_dump
hex dump unsupported extensions.

ca_default
the value used by theca utility, equivalent tono_issuer, no_pubkey, no_header, no_version,
no_sigdumpandno_signame.

EXAMPLES
Note: in these examples the ’\’ means the example should be all on one line.

Display the contents of a certificate:

openssl x509 -in cert.pem -noout -text

Display the certificate serial number:

openssl x509 -in cert.pem -noout -serial

Display the certificate subject name:

openssl x509 -in cert.pem -noout -subject

Display the certificate subject name inRFC2253form:

openssl x509 -in cert.pem -noout -subject -nameopt RFC2253

Display the certificate subject name in oneline form on a terminal supportingUTF8:

openssl x509 -in cert.pem -noout -subject -nameopt oneline,-escmsb

Display the certificateMD5 fingerprint:

openssl x509 -in cert.pem -noout -fingerprint

Display the certificateSHA1 fingerprint:

86 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

openssl x509 -sha1 -in cert.pem -noout -fingerprint

Convert a certificate fromPEM to DER format:

openssl x509 -in cert.pem -inform PEM -out cert.der -outform DER

Convert a certificate to a certificate request:

openssl x509 -x509toreq -in cert.pem -out req.pem -signkey key.pem

Convert a certificate request into a self signed certificate using extensions for aCA:

openssl x509 -req -in careq.pem -extfile openssl.cnf -extensions v3_ca \
-signkey key.pem -out cacert.pem

Sign a certificate request using theCA certificate above and add user certificate extensions:

openssl x509 -req -in req.pem -extfile openssl.cnf -extensions v3_usr \
-CA cacert.pem -CAkey key.pem -CAcreateserial

Set a certificate to be trusted forSSLclient use and change set its alias to ‘‘Steve’s Class 1CA’’

openssl x509 -in cert.pem -addtrust clientAuth \
-setalias "Steve’s Class 1 CA" -out trust.pem

NOTES
ThePEM format uses the header and footer lines:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

it will also handle files containing:

-----BEGIN X509 CERTIFICATE-----
-----END X509 CERTIFICATE-----

Trusted certificates have the lines

-----BEGIN TRUSTED CERTIFICATE-----
-----END TRUSTED CERTIFICATE-----

The conversion toUTF8 format used with the name options assumes that T61Strings use theISO8859−1
character set. This is wrong but Netscape andMSIE do this as do many certificates. So although this is
incorrect it is more likely to display the majority of certificates correctly.

The −fingerprint option takes the digest of theDER encoded certificate. This is commonly called a
‘‘fingerprint’’. Because of the nature of message digests the fingerprint of a certificate is unique to that
certificate and two certificates with the same fingerprint can be considered to be the same.

The Netscape fingerprint usesMD5 whereasMSIE usesSHA1.

The−email option searches the subject name and the subject alternative name extension. Only unique
email addresses will be printed out: it will not print the same address more than once.

CERTIFICATE EXTENSIONS
The−purposeoption checks the certificate extensions and determines what the certificate can be used
for. The actual checks done are rather complex and include various hacks and workarounds to handle
broken certificates and software.

The same code is used when verifying untrusted certificates in chains so this section is useful if a chain
is rejected by the verify code.

The basicConstraints extensionCA flag is used to determine whether the certificate can be used as a
CA. If the CA flag is true then it is aCA, if the CA flag is false then it is not aCA. All CAs should have
theCA flag set to true.

If the basicConstraints extension is absent then the certificate is considered to be a ‘‘possibleCA’’ other
extensions are checked according to the intended use of the certificate. A warning is given in this case
because the certificate should really not be regarded as aCA: however it is allowed to be aCA to work
around some broken software.

If the certificate is a V1 certificate (and thus has no extensions) and it is self signed it is also assumed to
be aCA but a warning is again given: this is to work around the problem of Verisign roots which are V1
self signed certificates.

0.9.7c 2003-01-30 87

X509(1) OpenSSL X509(1)

If the keyUsage extension is present then additional restraints are made on the uses of the certificate. A
CA certificatemust have the keyCertSign bit set if the keyUsage extension is present.

The extended key usage extension places additional restrictions on the certificate uses. If this extension
is present (whether critical or not) the key can only be used for the purposes specified.

A complete description of each test is given below. The comments about basicConstraints and
keyUsage and V1 certificates above apply toall CA certificates.

SSL Client
The extended key usage extension must be absent or include the ‘‘web client authentication’’OID.
keyUsage must be absent or it must have the digitalSignature bit set. Netscape certificate type
must be absent or it must have theSSLclient bit set.

SSL Client CA
The extended key usage extension must be absent or include the ‘‘web client authentication’’OID.
Netscape certificate type must be absent or it must have theSSL CAbit set: this is used as a work
around if the basicConstraints extension is absent.

SSL Server
The extended key usage extension must be absent or include the ‘‘web server authentication’’
and/or one of theSGC OIDs. keyUsage must be absent or it must have the digitalSignature, the
keyEncipherment set or both bits set. Netscape certificate type must be absent or have theSSL
server bit set.

SSL ServerCA
The extended key usage extension must be absent or include the ‘‘web server authentication’’
and/or one of theSGCOIDs. Netscape certificate type must be absent or theSSL CAbit must be
set: this is used as a work around if the basicConstraints extension is absent.

NetscapeSSL Server
For NetscapeSSL clients to connect to anSSL server it must have the keyEncipherment bit set if
the keyUsage extension is present. This isn’t always valid because some cipher suites use the key
for digital signing. Otherwise it is the same as a normalSSLserver.

Common S/MIME Client Tests
The extended key usage extension must be absent or include the ‘‘email protection’’OID.
Netscape certificate type must be absent or should have the S/MIME bit set. If the S/MIME bit is
not set in netscape certificate type then theSSL client bit is tolerated as an alternative but a warn-
ing is shown: this is because some Verisign certificates don’t set the S/MIME bit.

S/MIME Signing
In addition to the common S/MIME client tests the digitalSignature bit must be set if the
keyUsage extension is present.

S/MIME Encryption
In addition to the common S/MIME tests the keyEncipherment bit must be set if the keyUsage
extension is present.

S/MIME CA
The extended key usage extension must be absent or include the ‘‘email protection’’OID.
Netscape certificate type must be absent or must have the S/MIMECA bit set: this is used as a
work around if the basicConstraints extension is absent.

CRL Signing
The keyUsage extension must be absent or it must have theCRL signing bit set.

CRL SigningCA
The normalCA tests apply. Except in this case the basicConstraints extension must be present.

BUGS
Extensions in certificates are not transferred to certificate requests and vice versa.

It is possible to produce invalid certificates or requests by specifying the wrong private key or using
inconsistent options in some cases: these should be checked.

There should be options to explicitly set such things as start and end dates rather than an offset from the
current time.

88 2003-01-30 0.9.7c

X509(1) OpenSSL X509(1)

The code to implement the verify behaviour described in theTRUST SETTINGS is currently being
developed. It thus describes the intended behaviour rather than the current behaviour. It is hoped that it
will represent reality in OpenSSL 0.9.5 and later.

SEE ALSO
req(1), ca(1), genrsa(1), gendsa(1), verify(1)

0.9.7c 2003-01-30 89

ASN1_OBJECT_new(3) OpenSSL ASN1_OBJECT_new(3)

NAME
ASN1_OBJECT_new, ASN1_OBJECT_free, − object allocation functions

SYNOPSIS
ASN1_OBJECT *ASN1_OBJECT_new(void);
void ASN1_OBJECT_free(ASN1_OBJECT *a);

DESCRIPTION
TheASN1_OBJECTallocation routines, allocate and free anASN1_OBJECTstructure, which represents
anASN1 OBJECT IDENTIFIER.

ASN1_OBJECT_new()allocates and initializes aASN1_OBJECTstructure.

ASN1_OBJECT_free()frees up theASN1_OBJECT structurea.

NOTES
Although ASN1_OBJECT_new()allocates a newASN1_OBJECTstructure it is almost never used in
applications. TheASN1 object utility functions such asOBJ_nid2obj()are used instead.

RETURN VALUES
If the allocation fails,ASN1_OBJECT_new()returnsNULL and sets an error code that can be obtained
by ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

ASN1_OBJECT_free()returns no value.

SEE ALSO
ERR_get_error(3), d2i_ASN1_OBJECT(3)

HISTORY
ASN1_OBJECT_new()and ASN1_OBJECT_free()are available in all versions of SSLeay and
OpenSSL.

90 2002-10-09 0.9.7c

ASN1_STRING_length(3) OpenSSL ASN1_STRING_length(3)

NAME
ASN1_STRING_dup, ASN1_STRING_cmp, ASN1_STRING_set, ASN1_STRING_length,
ASN1_STRING_length_set, ASN1_STRING_type, ASN1_STRING_data − ASN1_STRING utility
functions

SYNOPSIS
int ASN1_STRING_length(ASN1_STRING *x);
unsigned char * ASN1_STRING_data(ASN1_STRING *x);

ASN1_STRING * ASN1_STRING_dup(ASN1_STRING *a);

int ASN1_STRING_cmp(ASN1_STRING *a, ASN1_STRING *b);

int ASN1_STRING_set(ASN1_STRING *str, const void *data, int len);

int ASN1_STRING_type(ASN1_STRING *x);

int ASN1_STRING_to_UTF8(unsigned char **out, ASN1_STRING *in);

DESCRIPTION
These functions allow anASN1_STRING structure to be manipulated.

ASN1_STRING_length()returns the length of the content ofx.

ASN1_STRING_data()returns an internal pointer to the data ofx. Since this is an internal pointer it
shouldnot be freed or modified in any way.

ASN1_STRING_dup()returns a copy of the structurea.

ASN1_STRING_cmp()comparesa andb returning 0 if the two are identical. The string types and con-
tent are compared.

ASN1_STRING_set()sets the data of stringstr to the bufferdata or lengthlen. The supplied data is
copied. Iflen is −1 then the length is determined by strlen(data).

ASN1_STRING_type() returns the type of x, using standard constants such as
V_ASN1_OCTET_STRING.

ASN1_STRING_to_UTF8()converts the stringin to UTF8 format, the converted data is allocated in a
buffer in *out. The length ofout is returned or a negative error code. The buffer*out should be free
usingOPENSSL_free().

NOTES
Almost allASN1 types in OpenSSL are represented as anASN1_STRING structure. Other types such as
ASN1_OCTET_STRING are simply typedefed toASN1_STRING and the functions call the
ASN1_STRING equivalents. ASN1_STRING is also used for someCHOICE types which consist
entirely of primitive string types such asDirectoryString andTime.

These functions shouldnot be used to examine or modifyASN1_INTEGER or ASN1_ENUMERATED
types: the relevantINTEGER or ENUMERATED utility functions should be used instead.

In general it cannot be assumed that the data returned byASN1_STRING_data()is null terminated or
does not contain embedded nulls. The actual format of the data will depend on the actual string type
itself: for example for and IA5String the data will beASCII, for a BMPString two bytes per character in
big endian format, UTF8String will be inUTF8 format.

Similar care should be take to ensure the data is in the correct format when calling
ASN1_STRING_set().

RETURN VALUES
SEE ALSO

ERR_get_error(3)

HISTORY

0.9.7c 2002-10-20 91

ASN1_STRING_new(3) OpenSSL ASN1_STRING_new(3)

NAME
ASN1_STRING_new, ASN1_STRING_type_new, ASN1_STRING_free − ASN1_STRING allocation
functions

SYNOPSIS
ASN1_STRING * ASN1_STRING_new(void);
ASN1_STRING * ASN1_STRING_type_new(int type);
void ASN1_STRING_free(ASN1_STRING *a);

DESCRIPTION
ASN1_STRING_new()returns an allocatedASN1_STRING structure. Its type is undefined.

ASN1_STRING_type_new()returns an allocatedASN1_STRING structure of typetype.

ASN1_STRING_free()frees upa.

NOTES
Other string types call theASN1_STRING functions. For exampleASN1_OCTET_STRING_new()calls
ASN1_STRING_type(V_ASN1_OCTET_STRING).

RETURN VALUES
ASN1_STRING_new()andASN1_STRING_type_new()return a validASN1_STRINGstructure orNULL
if an error occurred.

ASN1_STRING_free()does not return a value.

SEE ALSO
ERR_get_error(3)

HISTORY
TBA

92 2002-10-20 0.9.7c

ASN1_STRING_print_ex(3) OpenSSL ASN1_STRING_print_ex(3)

NAME
ASN1_STRING_print_ex, ASN1_STRING_print_ex_fp − ASN1_STRING output routines.

SYNOPSIS
#include <openssl/asn1.h>

int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print_ex_fp(FILE *fp, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print(BIO *out, ASN1_STRING *str);

DESCRIPTION
These functions output anASN1_STRING structure.ASN1_STRING is used to represent all theASN1
string types.

ASN1_STRING_print_ex()outputs str to out, the format is determined by the optionsflags.
ASN1_STRING_print_ex_fp()is identical except it outputs tofp instead.

ASN1_STRING_print()prints str to out but using a different format toASN1_STRING_print_ex(). It
replaces unprintable characters (other thanCR, LF) with ’.’.

NOTES
ASN1_STRING_print()is a legacy function which should be avoided in new applications.

Although there are a large number of options frequentlyASN1_STRFLAGS_RFC2253is suitable, or on
UTF8 terminalsASN1_STRFLAGS_RFC2253& ˜ASN1_STRFLAGS_ESC_MSB.

The complete set of supported options forflags is listed below.

Various characters can be escaped. IfASN1_STRFLGS_ESC_2253is set the characters determined by
RFC2253 are escaped. IfASN1_STRFLGS_ESC_CTRL is set control characters are escaped. If
ASN1_STRFLGS_ESC_MSBis set characters with theMSB set are escaped: this option shouldnot be
used if the terminal correctly interpretsUTF8 sequences.

Escaping takes several forms.

If the character being escaped is a 16 bit character then the form ‘‘\WXXXX’’ is used using exactly
four characters for the hex representation. If it is 32 bits then ‘‘\UXXXXXXXX’’ is used using eight
characters of its hex representation. These forms will only be used ifUTF8 conversion is not set (see
below).

Printable characters are normally escaped using the backslash ’\’ character. IfASN1_STR-
FLGS_ESC_QUOTE is set then the whole string is instead surrounded by double quote characters: this
is arguably more readable than the backslash notation. Other characters use the ‘‘\XX’’ using exactly
two characters of the hex representation.

If ASN1_STRFLGS_UTF8_CONVERT is set then characters are converted toUTF8 format first. If the
terminal supports the display ofUTF8 sequences then this option will correctly display multi byte char-
acters.

If ASN1_STRFLGS_IGNORE_TYPE is set then the string type is not interpreted at all: everything is
assumed to be one byte per character. This is primarily for debugging purposes and can result in con-
fusing output in multi character strings.

If ASN1_STRFLGS_SHOW_TYPE is set then the string type itself is printed out before its value (for
example ‘‘BMPSTRING’’), this actually usesASN1_tag2str().

The content of a string instead of being interpreted can be ‘‘dumped’’: this just outputs the value of the
string using the form #XXXX using hex format for each octet.

If ASN1_STRFLGS_DUMP_ALL is set then any type is dumped.

Normally non character string types (such asOCTET STRING) are assumed to be one byte per charac-
ter, if ASN1_STRFLAGS_DUMP_UNKNOWN is set then they will be dumped instead.

When a type is dumped normally just the content octets are printed, ifASN1_STRFLGS_DUMP_DERis
set then the complete encoding is dumped instead (including tag and length octets).

ASN1_STRFLGS_RFC2253includes all the flags required byRFC2253. It is equivalent to:
ASN1_STRFLGS_ESC_2253 ASN1_STRFLGS_ESC_CTRL ASN1_STRFLGS_ESC_MSB

0.9.7c 2002-11-11 93

ASN1_STRING_print_ex(3) OpenSSL ASN1_STRING_print_ex(3)

ASN1_STRFLGS_UTF8_CONVERT ASN1_STRFLGS_DUMP_UNKNOWN ASN1_STR-
FLGS_DUMP_DER

SEE ALSO
X509_NAME_print_ex(3), ASN1_tag2str(3)

HISTORY
TBA

94 2002-11-11 0.9.7c

bio(3) OpenSSL bio(3)

NAME
bio − I/O abstraction

SYNOPSIS
#include <openssl/bio.h>

TBA

DESCRIPTION
A BIO is an I/O abstraction, it hides many of the underlying I/O details from an application. If an appli-
cation uses aBIO for its I/O it can transparently handleSSLconnections, unencrypted network connec-
tions and file I/O.

There are two type ofBIO, a source/sinkBIO and a filterBIO.

As its name implies a source/sinkBIO is a source and/or sink of data, examples include a socketBIO
and a fileBIO.

A filter BIO takes data from oneBIO and passes it through to another, or the application. The data may
be left unmodified (for example a message digestBIO) or translated (for example an encryptionBIO).
The effect of a filterBIO may change according to the I/O operation it is performing: for example an
encryptionBIO will encrypt data if it is being written to and decrypt data if it is being read from.

BIOs can be joined together to form a chain (a singleBIO is a chain with one component). A chain nor-
mally consist of one source/sinkBIO and one or more filter BIOs. Data read from or written to the first
BIO then traverses the chain to the end (normally a source/sinkBIO).

SEE ALSO
BIO_ctrl (3), BIO_f_base64(3), BIO_f_buffer(3), BIO_f_cipher(3), BIO_f_md(3), BIO_f_null(3),
BIO_f_ssl(3), BIO_find_type(3), BIO_new(3), BIO_new_bio_pair(3), BIO_push(3), BIO_read(3),
BIO_s_accept(3), BIO_s_bio(3), BIO_s_connect(3), BIO_s_fd(3), BIO_s_file(3), BIO_s_mem(3),
BIO_s_null(3), BIO_s_socket(3), BIO_set_callback(3), BIO_should_retry(3)

0.9.7c 2001-04-12 95

BIO_ctrl(3) OpenSSL BIO_ctrl(3)

NAME
BIO_ctrl, BIO_callback_ctrl, BIO_ptr_ctrl, BIO_int_ctrl, BIO_reset, BIO_seek, BIO_tell, BIO_flush,
BIO_eof, BIO_set_close, BIO_get_close, BIO_pending, BIO_wpending, BIO_ctrl_pending,
BIO_ctrl_wpending, BIO_get_info_callback, BIO_set_info_callback − BIO control operations

SYNOPSIS
#include <openssl/bio.h>

long BIO_ctrl(BIO *bp,int cmd,long larg,void *parg);
long BIO_callback_ctrl(BIO *b, int cmd, void (*fp)(struct bio_st *, int, const char *, int, long, long));
char * BIO_ptr_ctrl(BIO *bp,int cmd,long larg);
long BIO_int_ctrl(BIO *bp,int cmd,long larg,int iarg);

int BIO_reset(BIO *b);
int BIO_seek(BIO *b, int ofs);
int BIO_tell(BIO *b);
int BIO_flush(BIO *b);
int BIO_eof(BIO *b);
int BIO_set_close(BIO *b,long flag);
int BIO_get_close(BIO *b);
int BIO_pending(BIO *b);
int BIO_wpending(BIO *b);
size_t BIO_ctrl_pending(BIO *b);
size_t BIO_ctrl_wpending(BIO *b);

int BIO_get_info_callback(BIO *b,bio_info_cb **cbp);
int BIO_set_info_callback(BIO *b,bio_info_cb *cb);

typedef void bio_info_cb(BIO *b, int oper, const char *ptr, int arg1, long arg2, long arg3);

DESCRIPTION
BIO_ctrl(), BIO_callback_ctrl(), BIO_ptr_ctrl() andBIO_int_ctrl() areBIO ‘‘control’’ operations tak-
ing arguments of various types. These functions are not normally called directly, various macros are
used instead. The standard macros are described below, macros specific to a particular type ofBIO are
described in the specific BIOs manual page as well as any special features of the standard calls.

BIO_reset()typically resets aBIO to some initial state, in the case of file related BIOs for example it
rewinds the file pointer to the start of the file.

BIO_seek()resets a file relatedBIO’s (that is file descriptor andFILE BIOs) file position pointer toofs
bytes from start of file.

BIO_tell() returns the current file position of a file relatedBIO.

BIO_flush()normally writes out any internally buffered data, in some cases it is used to signalEOFand
that no more data will be written.

BIO_eof()returns 1 if theBIO has readEOF, the precise meaning of ‘‘EOF’’ varies according to theBIO
type.

BIO_set_close()sets theBIO b close flag toflag. flag can take the valueBIO_CLOSEor BIO_NOCLOSE.
Typically BIO_CLOSEis used in a source/sinkBIO to indicate that the underlying I/O stream should be
closed when theBIO is freed.

BIO_get_close()returns the BIOs close flag.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending()andBIO_ctrl_wpending()return the number of
pending characters in the BIOs read and write buffers. Not all BIOs support these calls.
BIO_ctrl_pending()and BIO_ctrl_wpending()return a size_t type and are functions,BIO_pending()
andBIO_wpending()are macros which callBIO_ctrl().

RETURN VALUES
BIO_reset()normally returns 1 for success and 0 or −1 for failure. File BIOs are an exception, they
return 0 for success and −1 for failure.

BIO_seek()andBIO_tell() both return the current file position on success and −1 for failure, except file
BIOs which forBIO_seek()always return 0 for success and −1 for failure.

96 2000-09-19 0.9.7c

BIO_ctrl(3) OpenSSL BIO_ctrl(3)

BIO_flush()returns 1 for success and 0 or −1 for failure.

BIO_eof()returns 1 ifEOFhas been reached 0 otherwise.

BIO_set_close()always returns 1.

BIO_get_close()returns the close flag value:BIO_CLOSEor BIO_NOCLOSE.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending()andBIO_ctrl_wpending()return the amount of
pending data.

NOTES
BIO_flush(), because it can write data may return 0 or −1 indicating that the call should be retried later
in a similar manner toBIO_write(). TheBIO_should_retry()call should be used and appropriate action
taken is the call fails.

The return values ofBIO_pending()and BIO_wpending()may not reliably determine the amount of
pending data in all cases. For example in the case of a fileBIO some data may be available in theFILE
structures internal buffers but it is not possible to determine this in a portably way. For other types of
BIO they may not be supported.

Filter BIOs if they do not internally handle a particularBIO_ctrl() operation usually pass the operation
to the nextBIO in the chain. This often means there is no need to locate the requiredBIO for a particu-
lar operation, it can be called on a chain and it will be automatically passed to the relevantBIO. How-
ev er this can cause unexpected results: for example no current filter BIOs implementBIO_seek(), but
this may still succeed if the chain ends in aFILE or file descriptorBIO.

Source/sink BIOs return an 0 if they do not recognize theBIO_ctrl() operation.

BUGS
Some of the return values are ambiguous and care should be taken. In particular a return value of 0 can
be returned if an operation is not supported, if an error occurred, ifEOFhas not been reached and in the
case ofBIO_seek()on a fileBIO for a successful operation.

SEE ALSO
TBA

0.9.7c 2000-09-19 97

BIO_f_base64(3) OpenSSL BIO_f_base64(3)

NAME
BIO_f_base64 − base64 BIO filter

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_base64(void);

DESCRIPTION
BIO_f_base64()returns the base64BIO method. This is a filterBIO that base64 encodes any data writ-
ten through it and decodes any data read through it.

Base64 BIOs do not supportBIO_gets()or BIO_puts().

BIO_flush()on a base64BIO that is being written through is used to signal that no more data is to be
encoded: this is used to flush the final block through theBIO.

The flagBIO_FLAGS_BASE64_NO_NLcan be set withBIO_set_flags()to encode the data all on one
line or expect the data to be all on one line.

NOTES
Because of the format of base64 encoding the end of the encoded block cannot always be reliably
determined.

RETURN VALUES
BIO_f_base64()returns the base64BIO method.

EXAMPLES
Base64 encode the string ‘‘Hello World\n’’ and write the result to standard output:

BIO *bio, *b64;
char message[] = "Hello World \n";

b64 = BIO_new(BIO_f_base64());
bio = BIO_new_fp(stdout, BIO_NOCLOSE);
bio = BIO_push(b64, bio);
BIO_write(bio, message, strlen(message));
BIO_flush(bio);

BIO_free_all(bio);

Read Base64 encoded data from standard input and write the decoded data to standard output:

BIO *bio, *b64, *bio_out;
char inbuf[512];
int inlen;

b64 = BIO_new(BIO_f_base64());
bio = BIO_new_fp(stdin, BIO_NOCLOSE);
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
bio = BIO_push(b64, bio);
while((inlen = BIO_read(bio, inbuf, 512) > 0)

BIO_write(bio_out, inbuf, inlen);

BIO_free_all(bio);

BUGS
The ambiguity ofEOF in base64 encoded data can cause additional data following the base64 encoded
block to be misinterpreted.

There should be some way of specifying a test that theBIO can perform to reliably determineEOF(for
example aMIME boundary).

SEE ALSO
TBA

98 2003-05-19 0.9.7c

BIO_f_buffer(3) OpenSSL BIO_f_buffer(3)

NAME
BIO_f_buffer − buffering BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_f_buffer(void);

#define BIO_get_buffer_num_lines(b) BIO_ctrl(b,BIO_C_GET_BUFF_NUM_LINES,0,NULL)
#define BIO_set_read_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,0)
#define BIO_set_write_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,1)
#define BIO_set_buffer_size(b,size) BIO_ctrl(b,BIO_C_SET_BUFF_SIZE,size,NULL)
#define BIO_set_buffer_read_data(b,buf,num) BIO_ctrl(b,BIO_C_SET_BUFF_READ_DATA,num,buf)

DESCRIPTION
BIO_f_buffer()returns the bufferingBIO method.

Data written to a bufferingBIO is buffered and periodically written to the nextBIO in the chain. Data
read from a bufferingBIO comes from an internal buffer which is filled from the nextBIO in the chain.
BothBIO_gets()andBIO_puts()are supported.

CallingBIO_reset()on a bufferingBIO clears any buffered data.

BIO_get_buffer_num_lines()returns the number of lines currently buffered.

BIO_set_read_buffer_size(), BIO_set_write_buffer_size()andBIO_set_buffer_size()set the read, write
or both read and write buffer sizes tosize. The initial buffer size isDEFAULT_BUFFER_SIZE, currently
1024. Any attempt to reduce the buffer size belowDEFAULT_BUFFER_SIZEis ignored. Any buffered
data is cleared when the buffer is resized.

BIO_set_buffer_read_data()clears the read buffer and fills it withnum bytes ofbuf. If num is larger
than the current buffer size the buffer is expanded.

NOTES
Buffering BIOs implementBIO_gets()by usingBIO_read()operations on the nextBIO in the chain. By
prepending a bufferingBIO to a chain it is therefore possible to provideBIO_gets()functionality if the
following BIOs do not support it (for exampleSSLBIOs).

Data is only written to the nextBIO in the chain when the write buffer fills or whenBIO_flush()is
called. It is therefore important to callBIO_flush()whenever any pending data should be written such
as when removing a bufferingBIO usingBIO_pop().BIO_flush()may need to be retried if the ultimate
source/sinkBIO is non blocking.

RETURN VALUES
BIO_f_buffer()returns the bufferingBIO method.

BIO_get_buffer_num_lines()returns the number of lines buffered (may be 0).

BIO_set_read_buffer_size(), BIO_set_write_buffer_size()and BIO_set_buffer_size()return 1 if the
buffer was successfully resized or 0 for failure.

BIO_set_buffer_read_data()returns 1 if the data was set correctly or 0 if there was an error.

SEE ALSO
TBA

0.9.7c 2000-09-19 99

BIO_f_cipher(3) OpenSSL BIO_f_cipher(3)

NAME
BIO_f_cipher, BIO_set_cipher, BIO_get_cipher_status, BIO_get_cipher_ctx − cipher BIO filter

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_cipher(void);
void BIO_set_cipher(BIO *b,const EVP_CIPHER *cipher,

unsigned char *key, unsigned char *iv, int enc);
int BIO_get_cipher_status(BIO *b)
int BIO_get_cipher_ctx(BIO *b, EVP_CIPHER_CTX **pctx)

DESCRIPTION
BIO_f_cipher() returns the cipherBIO method. This is a filterBIO that encrypts any data written
through it, and decrypts any data read from it. It is aBIO wrapper for the cipher routines
EVP_CipherInit(), EVP_CipherUpdate()andEVP_CipherFinal().

Cipher BIOs do not supportBIO_gets()or BIO_puts().

BIO_flush()on an encryptionBIO that is being written through is used to signal that no more data is to
be encrypted: this is used to flush and possibly pad the final block through theBIO.

BIO_set_cipher()sets the cipher ofBIO b to cipher using keykey andIV iv. encshould be set to 1 for
encryption and zero for decryption.

When reading from an encryptionBIO the final block is automatically decrypted and checked when
EOF is detected.BIO_get_cipher_status()is a BIO_ctrl() macro which can be called to determine
whether the decryption operation was successful.

BIO_get_cipher_ctx()is a BIO_ctrl() macro which retrieves the internalBIO cipher context. The
retrieved context can be used in conjunction with the standard cipher routines to set it up. This is useful
whenBIO_set_cipher()is not flexible enough for the applications needs.

NOTES
When encryptingBIO_flush()must be called to flush the final block through theBIO. If it is not then
the final block will fail a subsequent decrypt.

When decrypting an error on the final block is signalled by a zero return value from the read operation.
A successful decrypt followed byEOF will also return zero for the final read.BIO_get_cipher_status()
should be called to determine if the decrypt was successful.

As always, ifBIO_gets()or BIO_puts()support is needed then it can be achieved by preceding the
cipherBIO with a bufferingBIO.

RETURN VALUES
BIO_f_cipher()returns the cipherBIO method.

BIO_set_cipher()does not return a value.

BIO_get_cipher_status()returns 1 for a successful decrypt and 0 for failure.

BIO_get_cipher_ctx()currently always returns 1.

EXAMPLES
TBA

SEE ALSO
TBA

100 2003-02-27 0.9.7c

BIO_f_md(3) OpenSSL BIO_f_md(3)

NAME
BIO_f_md, BIO_set_md, BIO_get_md, BIO_get_md_ctx − message digest BIO filter

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_md(void);
int BIO_set_md(BIO *b,EVP_MD *md);
int BIO_get_md(BIO *b,EVP_MD **mdp);
int BIO_get_md_ctx(BIO *b,EVP_MD_CTX **mdcp);

DESCRIPTION
BIO_f_md()returns the message digestBIO method. This is a filterBIO that digests any data passed
through it, it is aBIO wrapper for the digest routinesEVP_DigestInit(), EVP_DigestUpdate()and
EVP_DigestFinal().

Any data written or read through a digestBIO usingBIO_read()andBIO_write() is digested.

BIO_gets(), if itssizeparameter is large enough finishes the digest calculation and returns the digest
value.BIO_puts()is not supported.

BIO_reset()reinitialises a digestBIO.

BIO_set_md()sets the message digest ofBIO b to md: this must be called to initialize a digestBIO
before any data is passed through it. It is aBIO_ctrl() macro.

BIO_get_md()places the a pointer to the digest BIOs digest method inmdp, it is a BIO_ctrl()macro.

BIO_get_md_ctx()returns the digest BIOs context intomdcp.

NOTES
The context returned byBIO_get_md_ctx()can be used in calls toEVP_DigestFinal()and also the sig-
nature routinesEVP_SignFinal()andEVP_VerifyFinal().

The context returned byBIO_get_md_ctx()is an internal context structure. Changes made to this con-
text will affect the digestBIO itself and the context pointer will become invalid when the digestBIO is
freed.

After the digest has been retrieved from a digestBIO it must be reinitialized by callingBIO_reset(), or
BIO_set_md()before any more data is passed through it.

If an application needs to callBIO_gets()or BIO_puts()through a chain containing digest BIOs then
this can be done by prepending a bufferingBIO.

RETURN VALUES
BIO_f_md()returns the digestBIO method.

BIO_set_md(), BIO_get_md()andBIO_md_ctx()return 1 for success and 0 for failure.

EXAMPLES
The following example creates aBIO chain containing anSHA1 and MD5 digestBIO and passes the
string ‘‘Hello World’’ through it. Error checking has been omitted for clarity.

0.9.7c 2001-09-07 101

BIO_f_md(3) OpenSSL BIO_f_md(3)

BIO *bio, *mdtmp;
char message[] = "Hello World";
bio = BIO_new(BIO_s_null());
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_sha1());
/* For BIO_push() we want to append the sink BIO and keep a note of

* the start of the chain.
*/

bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
/* Note: mdtmp can now be discarded */
BIO_write(bio, message, strlen(message));

The next example digests data by reading through a chain instead:

BIO *bio, *mdtmp;
char buf[1024];
int rdlen;
bio = BIO_new_file(file, "rb");
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_sha1());
bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
do {

rdlen = BIO_read(bio, buf, sizeof(buf));
/* Might want to do something with the data here */

} while(rdlen > 0);

This next example retrieves the message digests from aBIO chain and outputs them. This could be used
with the examples above.

BIO *mdtmp;
unsigned char mdbuf[EVP_MAX_MD_SIZE];
int mdlen;
int i;
mdtmp = bio; /* Assume bio has previously been set up */
do {

EVP_MD *md;
mdtmp = BIO_find_type(mdtmp, BIO_TYPE_MD);
if(!mdtmp) break;
BIO_get_md(mdtmp, &md);
printf("%s digest", OBJ_nid2sn(EVP_MD_type(md)));
mdlen = BIO_gets(mdtmp, mdbuf, EVP_MAX_MD_SIZE);
for(i = 0; i < mdlen; i++) printf(":%02X", mdbuf[i]);
printf("\n");
mdtmp = BIO_next(mdtmp);

} while(mdtmp);

BIO_free_all(bio);

BUGS
The lack of support forBIO_puts()and the non standard behaviour ofBIO_gets()could be regarded as
anomalous. It could be argued thatBIO_gets()andBIO_puts()should be passed to the nextBIO in the
chain and digest the data passed through and that digests should be retrieved using a separate
BIO_ctrl() call.

SEE ALSO
TBA

102 2001-09-07 0.9.7c

BIO_f_null(3) OpenSSL BIO_f_null(3)

NAME
BIO_f_null − null filter

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_f_null(void);

DESCRIPTION
BIO_f_null()returns the null filterBIO method. This is a filterBIO that does nothing.

All requests to a null filterBIO are passed through to the nextBIO in the chain: this means that aBIO
chain containing a null filterBIO behaves just as though theBIO was not there.

NOTES
As may be apparent a null filterBIO is not particularly useful.

RETURN VALUES
BIO_f_null()returns the null filterBIO method.

SEE ALSO
TBA

0.9.7c 2000-09-14 103

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

NAME
BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes,
BIO_get_num_renegotiates, BIO_set_ssl_renegotiate_timeout, BIO_new_ssl, BIO_new_ssl_connect,
BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id, BIO_ssl_shutdown − SSL BIO

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/ssl.h>

BIO_METHOD *BIO_f_ssl(void);

#define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
#define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
#define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
#define BIO_set_ssl_renegotiate_bytes(b,num) \

BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
#define BIO_set_ssl_renegotiate_timeout(b,seconds) \

BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);
#define BIO_get_num_renegotiates(b) \

BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);

BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
int BIO_ssl_copy_session_id(BIO *to,BIO *from);
void BIO_ssl_shutdown(BIO *bio);

#define BIO_do_handshake(b) BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)

DESCRIPTION
BIO_f_ssl()returns theSSL BIO method. This is a filterBIO which is a wrapper round the OpenSSL
SSLroutines adding aBIO ‘‘flavour’’ to SSLI/O.

I/O performed on anSSL BIO communicates using theSSL protocol with the SSLs read and write
BIOs. If anSSL connection is not established then an attempt is made to establish one on the first I/O
call.

If a BIO is appended to anSSL BIOusingBIO_push()it is automatically used as theSSLBIOs read and
write BIOs.

Calling BIO_reset()on an SSL BIO closes down any currentSSL connection by callingSSL_shut-
down().BIO_reset()is then sent to the nextBIO in the chain: this will typically disconnect the underly-
ing transport. TheSSL BIOis then reset to the initial accept or connect state.

If the close flag is set when anSSL BIO is freed then the internalSSL structure is also freed using
SSL_free().

BIO_set_ssl()sets the internalSSLpointer ofBIO b to sslusing the close flagc.

BIO_get_ssl()retrieves theSSL pointer ofBIO b, it can then be manipulated using the standardSSL
library functions.

BIO_set_ssl_mode()sets theSSL BIO mode toclient. If client is 1 client mode is set. Ifclient is 0
server mode is set.

BIO_set_ssl_renegotiate_bytes()sets the renegotiate byte count tonum. When set after everynum
bytes of I/O (read and write) theSSL session is automatically renegotiated.num must be at least 512
bytes.

BIO_set_ssl_renegotiate_timeout()sets the renegotiate timeout toseconds. When the renegotiate time-
out elapses the session is automatically renegotiated.

BIO_get_num_renegotiates()returns the total number of session renegotiations due to I/O or timeout.

BIO_new_ssl()allocates anSSL BIOusingSSL_CTXctx and using client mode ifclient is non zero.

BIO_new_ssl_connect()creates a newBIO chain consisting of anSSL BIO (usingctx) followed by a
connectBIO.

104 2000-09-16 0.9.7c

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

BIO_new_buffer_ssl_connect()creates a newBIO chain consisting of a buffering BIO, an SSL BIO
(usingctx) and a connectBIO.

BIO_ssl_copy_session_id()copies anSSL session id betweenBIO chainsfrom and to. It does this by
locating theSSLBIOs in each chain and callingSSL_copy_session_id()on the internalSSLpointer.

BIO_ssl_shutdown()closes down anSSL connection onBIO chainbio. It does this by locating theSSL
BIO in the chain and callingSSL_shutdown()on its internalSSLpointer.

BIO_do_handshake()attempts to complete anSSLhandshake on the suppliedBIO and establish theSSL
connection. It returns 1 if the connection was established successfully. A zero or negative value is
returned if the connection could not be established, the callBIO_should_retry()should be used for non
blocking connect BIOs to determine if the call should be retried. If anSSLconnection has already been
established this call has no effect.

NOTES
SSLBIOs are exceptional in that if the underlying transport is non blocking they can still request a retry
in exceptional circumstances. Specifically this will happen if a session renegotiation takes place during
aBIO_read()operation, one case where this happens is whenSGCor step up occurs.

In OpenSSL 0.9.6 and later theSSLflag SSL_AUTO_RETRYcan be set to disable this behaviour. That is
when this flag is set anSSL BIOusing a blocking transport will never request a retry.

Since unknownBIO_ctrl() operations are sent through filter BIOs the servers name and port can be set
usingBIO_set_host()on theBIO returned byBIO_new_ssl_connect()without having to locate the con-
nectBIO first.

Applications do not have to callBIO_do_handshake()but may wish to do so to separate the handshake
process from other I/O processing.

RETURN VALUES
TBA

EXAMPLE
This SSL/TLSclient example, attempts to retrieve a page from anSSL/TLSweb server. The I/O routines
are identical to those of the unencrypted example inBIO_s_connect(3).

BIO *sbio, *out;
int len;
char tmpbuf[1024];
SSL_CTX *ctx;
SSL *ssl;

ERR_load_crypto_strings();
ERR_load_SSL_strings();
OpenSSL_add_all_algorithms();

/* We would seed the PRNG here if the platform didn’t
* do it automatically
*/

ctx = SSL_CTX_new(SSLv23_client_method());

/* We’d normally set some stuff like the verify paths and
* mode here because as things stand this will connect to
* any server whose certificate is signed by any CA.
*/

sbio = BIO_new_ssl_connect(ctx);

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
fprintf(stderr, "Can’t locate SSL pointer\n");
/* whatever ... */

}

0.9.7c 2000-09-16 105

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

/* Don’t want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

/* We might want to do other things with ssl here */

BIO_set_conn_hostname(sbio, "localhost:https");

out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(sbio) <= 0) {

fprintf(stderr, "Error connecting to server\n");
ERR_print_errors_fp(stderr);
/* whatever ... */

}

if(BIO_do_handshake(sbio) <= 0) {
fprintf(stderr, "Error establishing SSL connection\n");
ERR_print_errors_fp(stderr);
/* whatever ... */

}

/* Could examine ssl here to get connection info */

BIO_puts(sbio, "GET / HTTP/1.0\n\n");
for(;;) {

len = BIO_read(sbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);

}
BIO_free_all(sbio);
BIO_free(out);

Here is a simple server example. It makes use of a bufferingBIO to allow lines to be read from theSSL
BIO using BIO_gets. It creates a pseudo web page containing the actual request from a client and also
echoes the request to standard output.

BIO *sbio, *bbio, *acpt, *out;
int len;
char tmpbuf[1024];
SSL_CTX *ctx;
SSL *ssl;

ERR_load_crypto_strings();
ERR_load_SSL_strings();
OpenSSL_add_all_algorithms();

/* Might seed PRNG here */

ctx = SSL_CTX_new(SSLv23_server_method());

if (!SSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
 !SSL_CTX_use_PrivateKey_file(ctx,"server.pem",SSL_FILETYPE_PEM)
 !SSL_CTX_check_private_key(ctx)) {

fprintf(stderr, "Error setting up SSL_CTX\n");
ERR_print_errors_fp(stderr);
return 0;

}

/* Might do other things here like setting verify locations and
* DH and/or RSA temporary key callbacks
*/

/* New SSL BIO setup as server */
sbio=BIO_new_ssl(ctx,0);

BIO_get_ssl(sbio, &ssl);

106 2000-09-16 0.9.7c

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

if(!ssl) {
fprintf(stderr, "Can’t locate SSL pointer\n");
/* whatever ... */

}

/* Don’t want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

/* Create the buffering BIO */

bbio = BIO_new(BIO_f_buffer());

/* Add to chain */
sbio = BIO_push(bbio, sbio);

acpt=BIO_new_accept("4433");

/* By doing this when a new connection is established
* we automatically have sbio inserted into it. The
* BIO chain is now ’swallowed’ by the accept BIO and
* will be freed when the accept BIO is freed.
*/

BIO_set_accept_bios(acpt,sbio);

out = BIO_new_fp(stdout, BIO_NOCLOSE);

/* Setup accept BIO */
if(BIO_do_accept(acpt) <= 0) {

fprintf(stderr, "Error setting up accept BIO\n");
ERR_print_errors_fp(stderr);
return 0;

}

/* Now wait for incoming connection */
if(BIO_do_accept(acpt) <= 0) {

fprintf(stderr, "Error in connection\n");
ERR_print_errors_fp(stderr);
return 0;

}

/* We only want one connection so remove and free
* accept BIO
*/

sbio = BIO_pop(acpt);

BIO_free_all(acpt);

if(BIO_do_handshake(sbio) <= 0) {
fprintf(stderr, "Error in SSL handshake\n");
ERR_print_errors_fp(stderr);
return 0;

}

BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n");
BIO_puts(sbio, "<pre>\r\nConnection Established\r\nRequest headers:\r\n");
BIO_puts(sbio, "--\r\n");

for(;;) {
len = BIO_gets(sbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(sbio, tmpbuf, len);
BIO_write(out, tmpbuf, len);
/* Look for blank line signifying end of headers*/
if((tmpbuf[0] == ’\r’) (tmpbuf[0] == ’\n’)) break;

}

0.9.7c 2000-09-16 107

BIO_f_ssl(3) OpenSSL BIO_f_ssl(3)

BIO_puts(sbio, "--\r\n");
BIO_puts(sbio, "</pre>\r\n");

/* Since there is a buffering BIO present we had better flush it */
BIO_flush(sbio);

BIO_free_all(sbio);

SEE ALSO
TBA

108 2000-09-16 0.9.7c

BIO_find_type(3) OpenSSL BIO_find_type(3)

NAME
BIO_find_type, BIO_next − BIO chain traversal

SYNOPSIS
#include <openssl/bio.h>

BIO * BIO_find_type(BIO *b,int bio_type);
BIO * BIO_next(BIO *b);

#define BIO_method_type(b) ((b)->method->type)

#define BIO_TYPE_NONE 0
#define BIO_TYPE_MEM (1 0x0400)
#define BIO_TYPE_FILE (2 0x0400)

#define BIO_TYPE_FD (4 0x0400 0x0100)
#define BIO_TYPE_SOCKET (50x0400 0x0100)
#define BIO_TYPE_NULL (6 0x0400)
#define BIO_TYPE_SSL (7 0x0200)
#define BIO_TYPE_MD (8 0x0200)
#define BIO_TYPE_BUFFER (90x0200)
#define BIO_TYPE_CIPHER (10 0x0200)
#define BIO_TYPE_BASE64 (11 0x0200)
#define BIO_TYPE_CONNECT (12 0x0400 0x0100)
#define BIO_TYPE_ACCEPT (13 0x0400 0x0100)
#define BIO_TYPE_PROXY_CLIENT (14 0x0200)
#define BIO_TYPE_PROXY_SERVER (15 0x0200)
#define BIO_TYPE_NBIO_TEST (16 0x0200)
#define BIO_TYPE_NULL_FILTER (17 0x0200)
#define BIO_TYPE_BER (18 0x0200)
#define BIO_TYPE_BIO (19 0x0400)

#define BIO_TYPE_DESCRIPTOR 0x0100
#define BIO_TYPE_FILTER 0x0200
#define BIO_TYPE_SOURCE_SINK 0x0400

DESCRIPTION
TheBIO_find_type()searches for aBIO of a given type in a chain, starting atBIO b. If type is a specific
type (such asBIO_TYPE_MEM) then a search is made for aBIO of that type. Iftype is a general type
(such asBIO_TYPE_SOURCE_SINK) then the next matchingBIO of the given general type is searched
for. BIO_find_type()returns the next matchingBIO or NULL if none is found.

Note: not all theBIO_TYPE_* types above hav e correspondingBIO implementations.

BIO_next()returns the nextBIO in a chain. It can be used to traverse all BIOs in a chain or used in con-
junction withBIO_find_type()to find all BIOs of a certain type.

BIO_method_type()returns the type of aBIO.

RETURN VALUES
BIO_find_type()returns a matchingBIO or NULL for no match.

BIO_next()returns the nextBIO in a chain.

BIO_method_type()returns the type of theBIO b.

NOTES
BIO_next()was added to OpenSSL 0.9.6 to provide a ’clean’ way to traverse aBIO chain or find multi-
ple matches usingBIO_find_type(). Previous versions had to use:

next = bio->next_bio;

BUGS
BIO_find_type()in OpenSSL 0.9.5a and earlier could not be safely passed aNULL pointer for theb
argument.

0.9.7c 2000-09-14 109

BIO_find_type(3) OpenSSL BIO_find_type(3)

EXAMPLE
Trav erse a chain looking for digest BIOs:

BIO *btmp;
btmp = in_bio; /* in_bio is chain to search through */

do {
btmp = BIO_find_type(btmp, BIO_TYPE_MD);
if(btmp == NULL) break; /* Not found */
/* btmp is a digest BIO, do something with it ...*/
...

btmp = BIO_next(btmp);
} while(btmp);

SEE ALSO
TBA

110 2000-09-14 0.9.7c

BIO_new(3) OpenSSL BIO_new(3)

NAME
BIO_new, BIO_set, BIO_free, BIO_vfree, BIO_free_all − BIO allocation and freeing functions

SYNOPSIS
#include <openssl/bio.h>

BIO * BIO_new(BIO_METHOD *type);
int BIO_set(BIO *a,BIO_METHOD *type);
int BIO_free(BIO *a);
void BIO_vfree(BIO *a);
void BIO_free_all(BIO *a);

DESCRIPTION
TheBIO_new()function returns a newBIO using methodtype.

BIO_set()sets the method of an already existingBIO.

BIO_free()frees up a singleBIO, BIO_vfree()also frees up a singleBIO but it does not return a value.
Calling BIO_free()may also have some effect on the underlying I/O structure, for example it may close
the file being referred to under certain circumstances. For more details see the individualBIO_METHOD
descriptions.

BIO_free_all()frees up an entireBIO chain, it does not halt if an error occurs freeing up an individual
BIO in the chain.

RETURN VALUES
BIO_new()returns a newly createdBIO or NULL if the call fails.

BIO_set(), BIO_free()return 1 for success and 0 for failure.

BIO_free_all()andBIO_vfree()do not return values.

NOTES
Some BIOs (such as memory BIOs) can be used immediately after callingBIO_new(). Others (such as
file BIOs) need some additional initialization, and frequently a utility function exists to create and ini-
tialize such BIOs.

If BIO_free()is called on aBIO chain it will only free oneBIO resulting in a memory leak.

Calling BIO_free_all()a singleBIO has the same effect as callingBIO_free()on it other than the dis-
carded return value.

Normally the type argument is supplied by a function which returns a pointer to aBIO_METHOD.
There is a naming convention for such functions: a source/sinkBIO is normally called BIO_s_*() and a
filter BIO BIO_f_*();

EXAMPLE
Create a memoryBIO:

BIO *mem = BIO_new(BIO_s_mem());

SEE ALSO
TBA

0.9.7c 2000-09-16 111

BIO_push(3) OpenSSL BIO_push(3)

NAME
BIO_push, BIO_pop − add and remove BIOs from a chain.

SYNOPSIS
#include <openssl/bio.h>

BIO * BIO_push(BIO *b,BIO *append);
BIO * BIO_pop(BIO *b);

DESCRIPTION
TheBIO_push()function appends theBIO appendto b, it returnsb.

BIO_pop()removes theBIO b from a chain and returns the nextBIO in the chain, orNULL if there is no
next BIO. The removedBIO then becomes a singleBIO with no association with the original chain, it
can thus be freed or attached to a different chain.

NOTES
The names of these functions are perhaps a little misleading.BIO_push()joins twoBIO chains whereas
BIO_pop()deletes a singleBIO from a chain, the deletedBIO does not need to be at the end of a chain.

The process of callingBIO_push()andBIO_pop()on aBIO may have additional consequences (a con-
trol call is made to the affected BIOs) any effects will be noted in the descriptions of individual BIOs.

EXAMPLES
For these examples supposemd1 andmd2 are digest BIOs,b64 is a base64BIO andf is a fileBIO.

If the call:

BIO_push(b64, f);

is made then the new chain will beb64−chain. After making the calls

BIO_push(md2, b64);
BIO_push(md1, md2);

the new chain ismd1−md2−b64−f. Data written tomd1 will be digested bymd1 andmd2, base64
encoded and written tof.

It should be noted that reading causes data to pass in the reverse direction, that is data is read fromf,
base64decodedand digested bymd1 andmd2. If the call:

BIO_pop(md2);

The call will returnb64and the new chain will bemd1−b64−fdata can be written tomd1 as before.

RETURN VALUES
BIO_push()returns the end of the chain,b.

BIO_pop()returns the nextBIO in the chain, orNULL if there is no nextBIO.

SEE ALSO
TBA

112 2000-09-14 0.9.7c

BIO_read(3) OpenSSL BIO_read(3)

NAME
BIO_read, BIO_write, BIO_gets, BIO_puts − BIO I/O functions

SYNOPSIS
#include <openssl/bio.h>

int BIO_read(BIO *b, void *buf, int len);
int BIO_gets(BIO *b,char *buf, int size);
int BIO_write(BIO *b, const void *buf, int len);
int BIO_puts(BIO *b,const char *buf);

DESCRIPTION
BIO_read()attempts to readlen bytes fromBIO b and places the data inbuf.

BIO_gets()performs the BIOs ‘‘gets’’ operation and places the data inbuf. Usually this operation will
attempt to read a line of data from theBIO of maximum lengthlen. There are exceptions to this how-
ev er, for exampleBIO_gets()on a digestBIO will calculate and return the digest and other BIOs may
not supportBIO_gets()at all.

BIO_write()attempts to writelen bytes frombuf to BIO b.

BIO_puts()attempts to write a null terminated stringbuf to BIO b

RETURN VALUES
All these functions return either the amount of data successfully read or written (if the return value is
positive) or that no data was successfully read or written if the result is 0 or −1. If the return value is −2
then the operation is not implemented in the specificBIO type.

NOTES
A 0 or −1 return is not necessarily an indication of an error. In particular when the source/sink is non-
blocking or of a certain type it may merely be an indication that no data is currently available and that
the application should retry the operation later.

One technique sometimes used with blocking sockets is to use a system call (such asselect(),poll() or
equivalent) to determine when data is available and then callread() to read the data. The equivalent
with BIOs (that is callselect()on the underlying I/O structure and then callBIO_read() to read the
data) shouldnot be used because a single call toBIO_read()can cause several reads (and writes in the
case ofSSLBIOs) on the underlying I/O structure and may block as a result. Insteadselect()(or equiv-
alent) should be combined with non blocking I/O so successive reads will request a retry instead of
blocking.

SeeBIO_should_retry(3) for details of how to determine the cause of a retry and other I/O issues.

If the BIO_gets()function is not supported by aBIO then it possible to work around this by adding a
bufferingBIO BIO_f_buffer(3) to the chain.

SEE ALSO
BIO_should_retry(3)

TBA

0.9.7c 2000-09-16 113

BIO_s_accept(3) OpenSSL BIO_s_accept(3)

NAME
BIO_s_accept, BIO_set_accept_port, BIO_get_accept_port, BIO_set_nbio_accept,
BIO_set_accept_bios, BIO_set_bind_mode, BIO_get_bind_mode, BIO_do_accept − accept BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_accept(void);

long BIO_set_accept_port(BIO *b, char *name);
char *BIO_get_accept_port(BIO *b);

BIO *BIO_new_accept(char *host_port);

long BIO_set_nbio_accept(BIO *b, int n);
long BIO_set_accept_bios(BIO *b, char *bio);

long BIO_set_bind_mode(BIO *b, long mode);
long BIO_get_bind_mode(BIO *b, long dummy);

#define BIO_BIND_NORMAL 0
#define BIO_BIND_REUSEADDR_IF_UNUSED 1
#define BIO_BIND_REUSEADDR 2

int BIO_do_accept(BIO *b);

DESCRIPTION
BIO_s_accept()returns the acceptBIO method. This is a wrapper round the platform’sTCP/IP socket
accept routines.

Using accept BIOs,TCP/IPconnections can be accepted and data transferred using onlyBIO routines.
In this way any platform specific operations are hidden by theBIO abstraction.

Read and write operations on an acceptBIO will perform I/O on the underlying connection. If no con-
nection is established and the port (see below) is set up properly then theBIO waits for an incoming
connection.

Accept BIOs supportBIO_puts()but notBIO_gets().

If the close flag is set on an acceptBIO then any active connection on that chain is shutdown and the
socket closed when theBIO is freed.

Calling BIO_reset()on a acceptBIO will close any active connection and reset theBIO into a state
where it awaits another incoming connection.

BIO_get_fd()andBIO_set_fd()can be called to retrieve or set the accept socket. SeeBIO_s_fd(3)

BIO_set_accept_port()uses the stringname to set the accept port. The port is represented as a string of
the form ‘‘host:port’’, where ‘‘host’’ is the interface to use and ‘‘port’’ is the port. Either or both values
can be ‘‘*’’ which is interpreted as meaning any interface or port respectively. ‘‘port’’ has the same syn-
tax as the port specified inBIO_set_conn_port()for connect BIOs, that is it can be a numerical port
string or a string to lookup usinggetservbyname()and a string table.

BIO_new_accept()combinesBIO_new()andBIO_set_accept_port()into a single call: that is it creates
a new acceptBIO with porthost_port.

BIO_set_nbio_accept()sets the accept socket to blocking mode (the default) ifn is 0 or non blocking
mode ifn is 1.

BIO_set_accept_bios()can be used to set a chain of BIOs which will be duplicated and prepended to
the chain when an incoming connection is received. This is useful if, for example, a buffering orSSL
BIO is required for each connection. The chain of BIOs must not be freed after this call, they will be
automatically freed when the acceptBIO is freed.

BIO_set_bind_mode()and BIO_get_bind_mode()set and retrieve the current bind mode. If
BIO_BIND_NORMAL (the default) is set then another socket cannot be bound to the same port. If
BIO_BIND_REUSEADDRis set then other sockets can bind to the same port. IfBIO_BIND_REUSE-
ADDR_IF_UNUSEDis set then and attempt is first made to useBIO_BIN_NORMAL, if this fails and the
port is not in use then a second attempt is made usingBIO_BIND_REUSEADDR.

114 2002-12-12 0.9.7c

BIO_s_accept(3) OpenSSL BIO_s_accept(3)

BIO_do_accept()serves two functions. When it is first called, after the acceptBIO has been setup, it
will attempt to create the accept socket and bind an address to it. Second and subsequent calls to
BIO_do_accept()will await an incoming connection, or request a retry in non blocking mode.

NOTES
When an acceptBIO is at the end of a chain it will await an incoming connection before processing I/O
calls. When an acceptBIO is not at then end of a chain it passes I/O calls to the nextBIO in the chain.

When a connection is established a new socketBIO is created for the connection and appended to the
chain. That is the chain is now accept−>socket. This effectively means that attempting I/O on an initial
accept socket will await an incoming connection then perform I/O on it.

If any additional BIOs have been set usingBIO_set_accept_bios()then they are placed between the
socket and the acceptBIO, that is the chain will be accept−>otherbios−>socket.

If a server wishes to process multiple connections (as is normally the case) then the acceptBIO must be
made available for further incoming connections. This can be done by waiting for a connection and
then calling:

connection = BIO_pop(accept);

After this callconnectionwill contain aBIO for the recently established connection andacceptwill
now be a singleBIO again which can be used to await further incoming connections. If no further con-
nections will be accepted theacceptcan be freed usingBIO_free().

If only a single connection will be processed it is possible to perform I/O using the acceptBIO itself.
This is often undesirable however because the acceptBIO will still accept additional incoming connec-
tions. This can be resolved by usingBIO_pop()(see above) and freeing up the acceptBIO after the ini-
tial connection.

If the underlying accept socket is non-blocking andBIO_do_accept()is called to await an incoming
connection it is possible forBIO_should_io_special()with the reasonBIO_RR_ACCEPT. If this happens
then it is an indication that an accept attempt would block: the application should take appropriate
action to wait until the underlying socket has accepted a connection and retry the call.

BIO_set_accept_port(), BIO_get_accept_port(), BIO_set_nbio_accept(), BIO_set_accept_bios(),
BIO_set_bind_mode(), BIO_get_bind_mode()andBIO_do_accept()are macros.

RETURN VALUES
TBA

EXAMPLE
This example accepts two connections on port 4444, sends messages down each and finally closes both
down.

BIO *abio, *cbio, *cbio2;
ERR_load_crypto_strings();
abio = BIO_new_accept("4444");

/* First call to BIO_accept() sets up accept BIO */
if(BIO_do_accept(abio) <= 0) {

fprintf(stderr, "Error setting up accept\n");
ERR_print_errors_fp(stderr);
exit(0);

}

0.9.7c 2002-12-12 115

BIO_s_accept(3) OpenSSL BIO_s_accept(3)

/* Wait for incoming connection */
if(BIO_do_accept(abio) <= 0) {

fprintf(stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr);
exit(0);

}
fprintf(stderr, "Connection 1 established\n");
/* Retrieve BIO for connection */
cbio = BIO_pop(abio);
BIO_puts(cbio, "Connection 1: Sending out Data on initial connection\n");
fprintf(stderr, "Sent out data on connection 1\n");
/* Wait for another connection */
if(BIO_do_accept(abio) <= 0) {

fprintf(stderr, "Error accepting connection\n");
ERR_print_errors_fp(stderr);
exit(0);

}
fprintf(stderr, "Connection 2 established\n");
/* Close accept BIO to refuse further connections */
cbio2 = BIO_pop(abio);
BIO_free(abio);
BIO_puts(cbio2, "Connection 2: Sending out Data on second\n");
fprintf(stderr, "Sent out data on connection 2\n");

BIO_puts(cbio, "Connection 1: Second connection established\n");
/* Close the two established connections */
BIO_free(cbio);
BIO_free(cbio2);

SEE ALSO
TBA

116 2002-12-12 0.9.7c

BIO_s_bio(3) OpenSSL BIO_s_bio(3)

NAME
BIO_s_bio, BIO_make_bio_pair, BIO_destroy_bio_pair, BIO_shutdown_wr, BIO_set_write_buf_size,
BIO_get_write_buf_size, BIO_new_bio_pair, BIO_get_write_guarantee, BIO_ctrl_get_write_guaran-
tee, BIO_get_read_request, BIO_ctrl_get_read_request, BIO_ctrl_reset_read_request − BIO pair BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_bio(void);

#define BIO_make_bio_pair(b1,b2) (int)BIO_ctrl(b1,BIO_C_MAKE_BIO_PAIR,0,b2)
#define BIO_destroy_bio_pair(b) (int)BIO_ctrl(b,BIO_C_DESTROY_BIO_PAIR,0,NULL)

#define BIO_shutdown_wr(b) (int)BIO_ctrl(b, BIO_C_SHUTDOWN_WR, 0, NULL)

#define BIO_set_write_buf_size(b,size) (int)BIO_ctrl(b,BIO_C_SET_WRITE_BUF_SIZE,size,NULL)
#define BIO_get_write_buf_size(b,size) (size_t)BIO_ctrl(b,BIO_C_GET_WRITE_BUF_SIZE,size,NULL)

int BIO_new_bio_pair(BIO **bio1, size_t writebuf1, BIO **bio2, size_t writebuf2);

#define BIO_get_write_guarantee(b) (int)BIO_ctrl(b,BIO_C_GET_WRITE_GUARANTEE,0,NULL)
size_t BIO_ctrl_get_write_guarantee(BIO *b);

#define BIO_get_read_request(b) (int)BIO_ctrl(b,BIO_C_GET_READ_REQUEST,0,NULL)
size_t BIO_ctrl_get_read_request(BIO *b);

int BIO_ctrl_reset_read_request(BIO *b);

DESCRIPTION
BIO_s_bio()returns the method for aBIO pair. A BIO pair is a pair of source/sink BIOs where data
written to either half of the pair is buffered and can be read from the other half. Both halves must usu-
ally by handled by the same application thread since no locking is done on the internal data structures.

SinceBIO chains typically end in a source/sinkBIO it is possible to make this one half of aBIO pair
and have all the data processed by the chain under application control.

One typical use ofBIO pairs is to placeTLS/SSLI/O under application control, this can be used when
the application wishes to use a non standard transport forTLS/SSL or the normal socket routines are
inappropriate.

Calls toBIO_read()will read data from the buffer or request a retry if no data is available.

Calls toBIO_write()will place data in the buffer or request a retry if the buffer is full.

The standard callsBIO_ctrl_pending()andBIO_ctrl_wpending()can be used to determine the amount
of pending data in the read or write buffer.

BIO_reset()clears any data in the write buffer.

BIO_make_bio_pair()joins two separate BIOs into a connected pair.

BIO_destroy_pair()destroys the association between two connected BIOs. Freeing up any half of the
pair will automatically destroy the association.

BIO_shutdown_wr()is used to close down aBIO b. After this call no further writes onBIO b are
allowed (they will return an error). Reads on the other half of the pair will return any pending data or
EOFwhen all pending data has been read.

BIO_set_write_buf_size()sets the write buffer size ofBIO b to size. If the size is not initialized a
default value is used. This is currently 17K, sufficient for a maximum sizeTLS record.

BIO_get_write_buf_size()returns the size of the write buffer.

BIO_new_bio_pair() combines the calls to BIO_new(), BIO_make_bio_pair() and
BIO_set_write_buf_size()to create a connected pair of BIOsbio1, bio2 with write buffer sizeswrite-
buf1 andwritebuf2. If either size is zero then the default size is used.BIO_new_bio_pair()does not
check whetherbio1 or bio2 do point to some otherBIO, the values are overwritten,BIO_free()is not
called.

BIO_get_write_guarantee()and BIO_ctrl_get_write_guarantee()return the maximum length of data
that can be currently written to theBIO. Writes larger than this value will return a value from

0.9.7c 2002-12-12 117

BIO_s_bio(3) OpenSSL BIO_s_bio(3)

BIO_write() less than the amount requested or if the buffer is full request a retry.
BIO_ctrl_get_write_guarantee()is a function whereasBIO_get_write_guarantee()is a macro.

BIO_get_read_request()andBIO_ctrl_get_read_request()return the amount of data requested, or the
buffer size if it is less, if the last read attempt at the other half of theBIO pair failed due to an empty
buffer. This can be used to determine how much data should be written to theBIO so the next read will
succeed: this is most useful inTLS/SSLapplications where the amount of data read is usually meaning-
ful rather than just a buffer size. After a successful read this call will return zero. It also will return
zero once new data has been written satisfying the read request or part of it. Note that
BIO_get_read_request()never returns an amount larger than that returned byBIO_get_write_guaran-
tee().

BIO_ctrl_reset_read_request()can also be used to reset the value returned byBIO_get_read_request()
to zero.

NOTES
Both halves of aBIO pair should be freed. That is even if one half is implicit freed due to a
BIO_free_all()or SSL_free()call the other half needs to be freed.

When used in bidirectional applications (such asTLS/SSL) care should be taken to flush any data in the
write buffer. This can be done by callingBIO_pending()on the other half of the pair and, if any data is
pending, reading it and sending it to the underlying transport. This must be done before any normal
processing (such as callingselect()) due to a request andBIO_should_read()being true.

To see why this is important consider a case where a request is sent usingBIO_write()and a response
read withBIO_read(), this can occur during anTLS/SSLhandshake for example.BIO_write()will suc-
ceed and place data in the write buffer.BIO_read()will initially fail and BIO_should_read()will be
true. If the application then waits for data to be available on the underlying transport before flushing the
write buffer it will never succeed because the request was never sent!

RETURN VALUES
BIO_new_bio_pair()returns 1 on success, with the new BIOs available inbio1 andbio2, or 0 on fail-
ure, with NULL pointers stored into the locations forbio1 and bio2. Check the error stack for more
information.

[XXXXX: More return values need to be added here]

EXAMPLE
TheBIO pair can be used to have full control over the network access of an application. The application
can callselect()on the socket as required without having to go through the SSL−interface.

BIO *internal_bio, *network_bio;
...
BIO_new_bio_pair(internal_bio, 0, network_bio, 0);
SSL_set_bio(ssl, internal_bio, internal_bio);
SSL_operations();
...

application TLS-engine

+----------> SSL_operations()

 /\
 \/
 BIO-pair (internal_bio)

+----------< BIO-pair (network_bio)

socket

...
SSL_free(ssl); /* implicitly frees internal_bio */
BIO_free(network_bio);
...

As the BIO pair will only buffer the data and never directly access the connection, it behaves non-
blocking and will return as soon as the write buffer is full or the read buffer is drained. Then the appli-
cation has to flush the write buffer and/or fill the read buffer.

118 2002-12-12 0.9.7c

BIO_s_bio(3) OpenSSL BIO_s_bio(3)

Use theBIO_ctrl_pending(), to find out whether data is buffered in theBIO and must be transfered to
the network. UseBIO_ctrl_get_read_request()to find out, how many bytes must be written into the
buffer before theSSL_operation()can successfully be continued.

WARNING
As the data is buffered,SSL_operation()may return with aERROR_SSL_WANT_READcondition, but
there is still data in the write buffer. An application must not rely on the error value ofSSL_operation()
but must assure that the write buffer is always flushed first. Otherwise a deadlock may occur as the peer
might be waiting for the data before being able to continue.

SEE ALSO
SSL_set_bio(3), ssl(3), bio (3), BIO_should_retry(3), BIO_read(3)

0.9.7c 2002-12-12 119

BIO_s_connect(3) OpenSSL BIO_s_connect(3)

NAME
BIO_s_connect, BIO_set_conn_hostname, BIO_set_conn_port, BIO_set_conn_ip,
BIO_set_conn_int_port, BIO_get_conn_hostname, BIO_get_conn_port, BIO_get_conn_ip,
BIO_get_conn_int_port, BIO_set_nbio, BIO_do_connect − connect BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_connect(void);

BIO *BIO_new_connect(char *name);

long BIO_set_conn_hostname(BIO *b, char *name);
long BIO_set_conn_port(BIO *b, char *port);
long BIO_set_conn_ip(BIO *b, char *ip);
long BIO_set_conn_int_port(BIO *b, char *port);
char *BIO_get_conn_hostname(BIO *b);
char *BIO_get_conn_port(BIO *b);
char *BIO_get_conn_ip(BIO *b, dummy);
long BIO_get_conn_int_port(BIO *b, int port);

long BIO_set_nbio(BIO *b, long n);

int BIO_do_connect(BIO *b);

DESCRIPTION
BIO_s_connect()returns the connectBIO method. This is a wrapper round the platform’sTCP/IPsocket
connection routines.

Using connect BIOs,TCP/IPconnections can be made and data transferred using onlyBIO routines. In
this way any platform specific operations are hidden by theBIO abstraction.

Read and write operations on a connectBIO will perform I/O on the underlying connection. If no con-
nection is established and the port and hostname (see below) is set up properly then a connection is
established first.

Connect BIOs supportBIO_puts()but notBIO_gets().

If the close flag is set on a connectBIO then any active connection is shutdown and the socket closed
when theBIO is freed.

Calling BIO_reset()on a connectBIO will close any active connection and reset theBIO into a state
where it can connect to the same host again.

BIO_get_fd()places the underlying socket inc if it is not NULL, it also returns the socket . Ifc is not
NULL it should be of type (int *).

BIO_set_conn_hostname()uses the stringname to set the hostname. The hostname can be anIP
address. The hostname can also include the port in the form hostname:port . It is also acceptable to use
the form ‘‘hostname/any/other/path’’ or ‘‘hostname:port/any/other/path’’.

BIO_set_conn_port()sets the port toport. port can be the numerical form or a string such as ‘‘http’’. A
string will be looked up first usinggetservbyname()on the host platform but if that fails a standard ta-
ble of port names will be used. Currently the list is http, telnet, socks, https, ssl, ftp, gopher and wais.

BIO_set_conn_ip()sets theIP address toip using binary form, that is four bytes specifying theIP
address in big-endian form.

BIO_set_conn_int_port()sets the port usingport . port should be of type (int *).

BIO_get_conn_hostname()returns the hostname of the connectBIO or NULL if the BIO is initialized
but no hostname is set. This return value is an internal pointer which should not be modified.

BIO_get_conn_port()returns the port as a string.

BIO_get_conn_ip()returns theIP address in binary form.

BIO_get_conn_int_port()returns the port as an int.

BIO_set_nbio()sets the non blocking I/O flag ton. If n is zero then blocking I/O is set. Ifn is 1 then

120 2000-10-20 0.9.7c

BIO_s_connect(3) OpenSSL BIO_s_connect(3)

non blocking I/O is set. Blocking I/O is the default. The call toBIO_set_nbio()should be made before
the connection is established because non blocking I/O is set during the connect process.

BIO_new_connect()combinesBIO_new()and BIO_set_conn_hostname()into a single call: that is it
creates a new connectBIO with name.

BIO_do_connect()attempts to connect the suppliedBIO. It returns 1 if the connection was established
successfully. A zero or negative value is returned if the connection could not be established, the call
BIO_should_retry()should be used for non blocking connect BIOs to determine if the call should be
retried.

NOTES
If blocking I/O is set then a non positive return value from any I/O call is caused by an error condition,
although a zero return will normally mean that the connection was closed.

If the port name is supplied as part of the host name then this will override any value set with
BIO_set_conn_port(). This may be undesirable if the application does not wish to allow connection to
arbitrary ports. This can be avoided by checking for the presence of the ’:’ character in the passed host-
name and either indicating an error or truncating the string at that point.

The values returned byBIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip()and
BIO_get_conn_int_port()are updated when a connection attempt is made. Before any connection
attempt the values returned are those set by the application itself.

Applications do not have to callBIO_do_connect()but may wish to do so to separate the connection
process from other I/O processing.

If non blocking I/O is set then retries will be requested as appropriate.

It addition toBIO_should_read()and BIO_should_write()it is also possible forBIO_should_io_spe-
cial() to be true during the initial connection process with the reasonBIO_RR_CONNECT. If this is
returned then this is an indication that a connection attempt would block, the application should then
take appropriate action to wait until the underlying socket has connected and retry the call.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip(), BIO_set_conn_int_port(),
BIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip(), BIO_get_conn_int_port(),
BIO_set_nbio()andBIO_do_connect()are macros.

RETURN VALUES
BIO_s_connect()returns the connectBIO method.

BIO_get_fd()returns the socket or −1 if theBIO has not been initialized.

BIO_set_conn_hostname(), BIO_set_conn_port(),BIO_set_conn_ip()and BIO_set_conn_int_port()
always return 1.

BIO_get_conn_hostname()returns the connected hostname orNULL is none was set.

BIO_get_conn_port()returns a string representing the connected port orNULL if not set.

BIO_get_conn_ip()returns a pointer to the connectedIP address in binary form or all zeros if not set.

BIO_get_conn_int_port()returns the connected port or 0 if none was set.

BIO_set_nbio()always returns 1.

BIO_do_connect()returns 1 if the connection was successfully established and 0 or −1 if the connec-
tion failed.

EXAMPLE
This is example connects to a webserver on the local host and attempts to retrieve a page and copy the
result to standard output.

0.9.7c 2000-10-20 121

BIO_s_connect(3) OpenSSL BIO_s_connect(3)

BIO *cbio, *out;
int len;
char tmpbuf[1024];
ERR_load_crypto_strings();
cbio = BIO_new_connect("localhost:http");
out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(cbio) <= 0) {

fprintf(stderr, "Error connecting to server\n");
ERR_print_errors_fp(stderr);
/* whatever ... */
}

BIO_puts(cbio, "GET / HTTP/1.0\n\n");
for(;;) {

len = BIO_read(cbio, tmpbuf, 1024);
if(len <= 0) break;
BIO_write(out, tmpbuf, len);

}
BIO_free(cbio);
BIO_free(out);

SEE ALSO
TBA

122 2000-10-20 0.9.7c

BIO_s_fd(3) OpenSSL BIO_s_fd(3)

NAME
BIO_s_fd, BIO_set_fd, BIO_get_fd, BIO_new_fd − file descriptor BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_fd(void);

#define BIO_set_fd(b,fd,c) BIO_int_ctrl(b,BIO_C_SET_FD,c,fd)
#define BIO_get_fd(b,c) BIO_ctrl(b,BIO_C_GET_FD,0,(char *)c)

BIO *BIO_new_fd(int fd, int close_flag);

DESCRIPTION
BIO_s_fd()returns the file descriptorBIO method. This is a wrapper round the platforms file descriptor
routines such asread()andwrite().

BIO_read() and BIO_write() read or write the underlying descriptor.BIO_puts() is supported but
BIO_gets()is not.

If the close flag is set then thenclose()is called on the underlying file descriptor when theBIO is freed.

BIO_reset()attempts to change the file pointer to the start of file using lseek(fd, 0, 0).

BIO_seek()sets the file pointer to positionofs from start of file using lseek(fd, ofs, 0).

BIO_tell() returns the current file position by calling lseek(fd, 0, 1).

BIO_set_fd()sets the file descriptor ofBIO b to fd and the close flag toc.

BIO_get_fd()places the file descriptor inc if it is not NULL, it also returns the file descriptor. Ifc is not
NULL it should be of type (int *).

BIO_new_fd()returns a file descriptorBIO usingfd andclose_flag.

NOTES
The behaviour ofBIO_read()and BIO_write() depends on the behavior of the platformsread() and
write() calls on the descriptor. If the underlying file descriptor is in a non blocking mode then theBIO
will behave in the manner described in theBIO_read(3) andBIO_should_retry(3) manual pages.

File descriptor BIOs should not be used for socket I/O. Use socket BIOs instead.

RETURN VALUES
BIO_s_fd()returns the file descriptorBIO method.

BIO_reset()returns zero for success and −1 if an error occurred.BIO_seek()andBIO_tell() return the
current file position or −1 is an error occurred. These values reflect the underlyinglseek()behaviour.

BIO_set_fd()always returns 1.

BIO_get_fd()returns the file descriptor or −1 if theBIO has not been initialized.

BIO_new_fd()returns the newly allocatedBIO or NULL is an error occurred.

EXAMPLE
This is a file descriptorBIO version of ‘‘Hello World’’:

BIO *out;
out = BIO_new_fd(fileno(stdout), BIO_NOCLOSE);
BIO_printf(out, "Hello World\n");
BIO_free(out);

SEE ALSO
BIO_seek(3), BIO_tell(3), BIO_reset(3), BIO_read(3), BIO_write(3), BIO_puts(3), BIO_gets(3),
BIO_printf(3), BIO_set_close(3), BIO_get_close(3)

0.9.7c 2000-09-17 123

BIO_s_file(3) OpenSSL BIO_s_file(3)

NAME
BIO_s_file, BIO_new_file, BIO_new_fp, BIO_set_fp, BIO_get_fp, BIO_read_filename,
BIO_write_filename, BIO_append_filename, BIO_rw_filename − FILE bio

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_file(void);
BIO *BIO_new_file(const char *filename, const char *mode);
BIO *BIO_new_fp(FILE *stream, int flags);

BIO_set_fp(BIO *b,FILE *fp, int flags);
BIO_get_fp(BIO *b,FILE **fpp);

int BIO_read_filename(BIO *b, char *name)
int BIO_write_filename(BIO *b, char *name)
int BIO_append_filename(BIO *b, char *name)
int BIO_rw_filename(BIO *b, char *name)

DESCRIPTION
BIO_s_file()returns theBIO file method. As its name implies it is a wrapper round the stdioFILE struc-
ture and it is a source/sinkBIO.

Calls to BIO_read()and BIO_write() read and write data to the underlying stream.BIO_gets()and
BIO_puts()are supported on file BIOs.

BIO_flush()on a fileBIO calls thefflush()function on the wrapped stream.

BIO_reset()attempts to change the file pointer to the start of file using fseek(stream, 0, 0).

BIO_seek()sets the file pointer to positionofs from start of file using fseek(stream, ofs, 0).

BIO_eof()callsfeof().

Setting theBIO_CLOSEflag callsfclose()on the stream when theBIO is freed.

BIO_new_file()creates a new fileBIO with modemode the meaning ofmode is the same as the stdio
functionfopen(). TheBIO_CLOSEflag is set on the returnedBIO.

BIO_new_fp()creates a fileBIO wrapping stream. Flags can be:BIO_CLOSE, BIO_NOCLOSE (the
close flag)BIO_FP_TEXT(sets the underlying stream to text mode, default is binary: this only has any
effect under Win32).

BIO_set_fp()set the fp of a fileBIO to fp. flags has the same meaning as inBIO_new_fp(), it is a
macro.

BIO_get_fp()retrieves the fp of a fileBIO, it is a macro.

BIO_seek()is a macro that sets the position pointer tooffsetbytes from the start of file.

BIO_tell() returns the value of the position pointer.

BIO_read_filename(), BIO_write_filename(),BIO_append_filename()and BIO_rw_filename()set the
file BIO b to use filenamefor reading, writing, append or read write respectively.

NOTES
When wrapping stdout, stdin or stderr the underlying stream should not normally be closed so the
BIO_NOCLOSEflag should be set.

Because the fileBIO calls the underlying stdio functions any quirks in stdio behaviour will be mirrored
by the correspondingBIO.

EXAMPLES
File BIO ‘‘hello world’’:

BIO *bio_out;
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
BIO_printf(bio_out, "Hello World\n");

Alternative technique:

124 2000-09-19 0.9.7c

BIO_s_file(3) OpenSSL BIO_s_file(3)

BIO *bio_out;
bio_out = BIO_new(BIO_s_file());
if(bio_out == NULL) /* Error ... */
if(!BIO_set_fp(bio_out, stdout, BIO_NOCLOSE)) /* Error ... */
BIO_printf(bio_out, "Hello World\n");

Write to a file:

BIO *out;
out = BIO_new_file("filename.txt", "w");
if(!out) /* Error occurred */
BIO_printf(out, "Hello World\n");
BIO_free(out);

Alternative technique:

BIO *out;
out = BIO_new(BIO_s_file());
if(out == NULL) /* Error ... */
if(!BIO_write_filename(out, "filename.txt")) /* Error ... */
BIO_printf(out, "Hello World\n");
BIO_free(out);

RETURN VALUES
BIO_s_file()returns the fileBIO method.

BIO_new_file()andBIO_new_fp()return a fileBIO or NULL if an error occurred.

BIO_set_fp()andBIO_get_fp()return 1 for success or 0 for failure (although the current implementa-
tion never return 0).

BIO_seek()returns the same value as the underlyingfseek()function: 0 for success or −1 for failure.

BIO_tell() returns the current file position.

BIO_read_filename(), BIO_write_filename(),BIO_append_filename()andBIO_rw_filename()return 1
for success or 0 for failure.

BUGS
BIO_reset()andBIO_seek()are implemented usingfseek()on the underlying stream. The return value
for fseek()is 0 for success or −1 if an error occurred this differs from other types ofBIO which will typ-
ically return 1 for success and a non positive value if an error occurred.

SEE ALSO
BIO_seek(3), BIO_tell(3), BIO_reset(3), BIO_flush(3), BIO_read(3), BIO_write(3), BIO_puts(3),
BIO_gets(3), BIO_printf(3), BIO_set_close(3), BIO_get_close(3)

0.9.7c 2000-09-19 125

BIO_s_mem(3) OpenSSL BIO_s_mem(3)

NAME
BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf, BIO_get_mem_ptr,
BIO_new_mem_buf − memory BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_mem(void);

BIO_set_mem_eof_return(BIO *b,int v)
long BIO_get_mem_data(BIO *b, char **pp)
BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)

BIO *BIO_new_mem_buf(void *buf, int len);

DESCRIPTION
BIO_s_mem()return the memoryBIO method function.

A memoryBIO is a source/sinkBIO which uses memory for its I/O. Data written to a memoryBIO is
stored in aBUF_MEM structure which is extended as appropriate to accommodate the stored data.

Any data written to a memoryBIO can be recalled by reading from it. Unless the memoryBIO is read
only any data read from it is deleted from theBIO.

Memory BIOs supportBIO_gets()andBIO_puts().

If the BIO_CLOSEflag is set when a memoryBIO is freed then the underlyingBUF_MEM structure is
also freed.

Calling BIO_reset()on a read write memoryBIO clears any data in it. On a read onlyBIO it restores the
BIO to its original state and the read only data can be read again.

BIO_eof()is true if no data is in theBIO.

BIO_ctrl_pending()returns the number of bytes currently stored.

BIO_set_mem_eof_return()sets the behaviour of memoryBIO b when it is empty. If thev is zero then
an empty memoryBIO will return EOF(that is it will return zero and BIO_should_retry(b) will be false.
If v is non zero then it will returnv when it is empty and it will set the read retry flag (that is
BIO_read_retry(b) is true). To avoid ambiguity with a normal positive return valuev should be set to a
negative value, typically −1.

BIO_get_mem_data()setspp to a pointer to the start of the memory BIOs data and returns the total
amount of data available. It is implemented as a macro.

BIO_set_mem_buf()sets the internalBUF_MEM structure tobm and sets the close flag toc, that isc
should be eitherBIO_CLOSEor BIO_NOCLOSE. It is a macro.

BIO_get_mem_ptr()places the underlyingBUF_MEM structure inpp. It is a macro.

BIO_new_mem_buf()creates a memoryBIO using len bytes of data atbuf, if len is −1 then thebuf is
assumed to be null terminated and its length is determined bystrlen. TheBIO is set to a read only state
and as a result cannot be written to. This is useful when some data needs to be made available from a
static area of memory in the form of aBIO. The supplied data is read directly from the supplied buffer:
it is not copied first, so the supplied area of memory must be unchanged until theBIO is freed.

NOTES
Writes to memory BIOs will always succeed if memory is available: that is their size can grow indefi-
nitely.

Every read from a read write memoryBIO will remove the data just read with an internal copy opera-
tion, if a BIO contains a lots of data and it is read in small chunks the operation can be very slow. The
use of a read only memoryBIO avoids this problem. If theBIO must be read write then adding a buffer-
ing BIO to the chain will speed up the process.

BUGS
There should be an option to set the maximum size of a memoryBIO.

There should be a way to ‘‘rewind’’ a read writeBIO without destroying its contents.

126 2000-09-16 0.9.7c

BIO_s_mem(3) OpenSSL BIO_s_mem(3)

The copying operation should not occur after every small read of a largeBIO to improve efficiency.

EXAMPLE
Create a memoryBIO and write some data to it:

BIO *mem = BIO_new(BIO_s_mem());
BIO_puts(mem, "Hello World\n");

Create a read only memoryBIO:

char data[] = "Hello World";
BIO *mem;
mem = BIO_new_mem_buf(data, -1);

Extract theBUF_MEM structure from a memoryBIO and then free up theBIO:

BUF_MEM *bptr;
BIO_get_mem_ptr(mem, &bptr);
BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
BIO_free(mem);

SEE ALSO
TBA

0.9.7c 2000-09-16 127

BIO_s_null(3) OpenSSL BIO_s_null(3)

NAME
BIO_s_null − null data sink

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD * BIO_s_null(void);

DESCRIPTION
BIO_s_null()returns the null sinkBIO method. Data written to the null sink is discarded, reads return
EOF.

NOTES
A null sink BIO behaves in a similar manner to the Unix /dev/null device.

A null bio can be placed on the end of a chain to discard any data passed through it.

A null sink is useful if, for example, an application wishes to digest some data by writing through a
digest bio but not send the digested data anywhere. Since aBIO chain must normally include a
source/sinkBIO this can be achieved by adding a null sinkBIO to the end of the chain

RETURN VALUES
BIO_s_null()returns the null sinkBIO method.

SEE ALSO
TBA

128 2000-09-14 0.9.7c

BIO_s_socket(3) OpenSSL BIO_s_socket(3)

NAME
BIO_s_socket, BIO_new_socket − socket BIO

SYNOPSIS
#include <openssl/bio.h>

BIO_METHOD *BIO_s_socket(void);

long BIO_set_fd(BIO *b, int fd, long close_flag);
long BIO_get_fd(BIO *b, int *c);

BIO *BIO_new_socket(int sock, int close_flag);

DESCRIPTION
BIO_s_socket()returns the socketBIO method. This is a wrapper round the platform’s socket routines.

BIO_read() and BIO_write() read or write the underlying socket.BIO_puts() is supported but
BIO_gets()is not.

If the close flag is set then the socket is shut down and closed when theBIO is freed.

BIO_set_fd()sets the socket ofBIO b to fd and the close flag toclose_flag.

BIO_get_fd()places the socket inc if it is not NULL, it also returns the socket. Ifc is not NULL it
should be of type (int *).

BIO_new_socket()returns a socketBIO usingsockandclose_flag.

NOTES
Socket BIOs also support any relevant functionality of file descriptor BIOs.

The reason for having separate file descriptor and socket BIOs is that on some platforms sockets are not
file descriptors and use distinct I/O routines, Windows is one such platform. Any code mixing the two
will not work on all platforms.

BIO_set_fd()andBIO_get_fd()are macros.

RETURN VALUES
BIO_s_socket()returns the socketBIO method.

BIO_set_fd()always returns 1.

BIO_get_fd()returns the socket or −1 if theBIO has not been initialized.

BIO_new_socket()returns the newly allocatedBIO or NULL is an error occurred.

SEE ALSO
TBA

0.9.7c 2000-10-20 129

BIO_set_callback(3) OpenSSL BIO_set_callback(3)

NAME
BIO_set_callback, BIO_get_callback, BIO_set_callback_arg, BIO_get_callback_arg, BIO_debug_call-
back − BIO callback functions

SYNOPSIS
#include <openssl/bio.h>

#define BIO_set_callback(b,cb) ((b)->callback=(cb))
#define BIO_get_callback(b) ((b)->callback)
#define BIO_set_callback_arg(b,arg) ((b)->cb_arg=(char *)(arg))
#define BIO_get_callback_arg(b) ((b)->cb_arg)

long BIO_debug_callback(BIO *bio,int cmd,const char *argp,int argi,
long argl,long ret);

typedef long callback(BIO *b, int oper, const char *argp,
int argi, long argl, long retvalue);

DESCRIPTION
BIO_set_callback()and BIO_get_callback()set and retrieve theBIO callback, they are both macros.
The callback is called during most high levelBIO operations. It can be used for debugging purposes to
trace operations on aBIO or to modify its operation.

BIO_set_callback_arg()andBIO_get_callback_arg()are macros which can be used to set and retrieve
an argument for use in the callback.

BIO_debug_callback()is a standard debugging callback which prints out information relating to each
BIO operation. If the callback argument is set if is interpreted as aBIO to send the information to, other-
wise stderr is used.

callback()is the callback function itself. The meaning of each argument is described below.

TheBIO the callback is attached to is passed inb.

oper is set to the operation being performed. For some operations the callback is called twice, once
before and once after the actual operation, the latter case hasoper or’ed withBIO_CB_RETURN.

The meaning of the argumentsargp, argi andargl depends on the value ofoper, that is the operation
being performed.

retvalue is the return value that would be returned to the application if no callback were present. The
actual value returned is the return value of the callback itself. In the case of callbacks called before the
actualBIO operation 1 is placed in retvalue, if the return value is not positive it will be immediately
returned to the application and theBIO operation will not be performed.

The callback should normally simply returnretvalue when it has finished processing, unless if specifi-
cally wishes to modify the value returned to the application.

CALLBACK OPERATIONS
BIO_free(b)

callback(b,BIO_CB_FREE, NULL, 0L, 0L, 1L) is called before the free operation.

BIO_read(b, out, outl)
callback(b, BIO_CB_READ, out, outl, 0L, 1L) is called before the read and callback(b,
BIO_CB_READBIO_CB_RETURN, out, outl, 0L, retvalue) after.

BIO_write(b, in, inl)
callback(b, BIO_CB_WRITE, in, inl, 0L, 1L) is called before the write and callback(b,
BIO_CB_WRITEBIO_CB_RETURN, in, inl, 0L, retvalue) after.

BIO_gets(b, out, outl)
callback(b, BIO_CB_GETS, out, outl, 0L, 1L) is called before the operation and callback(b,
BIO_CB_GETSBIO_CB_RETURN, out, outl, 0L, retvalue) after.

BIO_puts(b, in)
callback(b, BIO_CB_WRITE, in, 0, 0L, 1L) is called before the operation and callback(b,
BIO_CB_WRITEBIO_CB_RETURN, in, 0, 0L, retvalue) after.

130 2000-09-14 0.9.7c

BIO_set_callback(3) OpenSSL BIO_set_callback(3)

BIO_ctrl(BIO *b, int cmd, long larg, void *parg)
callback(b,BIO_CB_CTRL,parg,cmd,larg,1L) is called before the call and call-
back(b,BIO_CB_CTRLBIO_CB_RETURN,parg,cmd, larg,ret) after.

EXAMPLE
TheBIO_debug_callback()function is a good example, its source is in crypto/bio/bio_cb.c

SEE ALSO
TBA

0.9.7c 2000-09-14 131

BIO_should_retry(3) OpenSSL BIO_should_retry(3)

NAME
BIO_should_retry, BIO_should_read, BIO_should_write, BIO_should_io_special, BIO_retry_type,
BIO_should_retry, BIO_get_retry_BIO, BIO_get_retry_reason − BIO retry functions

SYNOPSIS
#include <openssl/bio.h>

#define BIO_should_read(a) ((a)->flags & BIO_FLAGS_READ)
#define BIO_should_write(a) ((a)->flags & BIO_FLAGS_WRITE)
#define BIO_should_io_special(a) ((a)->flags & BIO_FLAGS_IO_SPECIAL)
#define BIO_retry_type(a) ((a)->flags & BIO_FLAGS_RWS)
#define BIO_should_retry(a) ((a)->flags & BIO_FLAGS_SHOULD_RETRY)

#define BIO_FLAGS_READ 0x01
#define BIO_FLAGS_WRITE 0x02
#define BIO_FLAGS_IO_SPECIAL 0x04
#define BIO_FLAGS_RWS (BIO_FLAGS_READ BIO_FLAGS_WRITEBIO_FLAGS_IO_SPECIAL)
#define BIO_FLAGS_SHOULD_RETRY 0x08

BIO * BIO_get_retry_BIO(BIO *bio, int *reason);
int BIO_get_retry_reason(BIO *bio);

DESCRIPTION
These functions determine why aBIO is not able to read or write data. They will typically be called
after a failedBIO_read()or BIO_write()call.

BIO_should_retry()is true if the call that produced this condition should then be retried at a later time.

If BIO_should_retry()is false then the cause is an error condition.

BIO_should_read()is true if the cause of the condition is that aBIO needs to read data.

BIO_should_write()is true if the cause of the condition is that aBIO needs to read data.

BIO_should_io_special()is true if some ‘‘special’’ condition, that is a reason other than reading or
writing is the cause of the condition.

BIO_get_retry_reason()returns a mask of the cause of a retry condition consisting of the values
BIO_FLAGS_READ , BIO_FLAGS_WRITE , BIO_FLAGS_IO_SPECIAL though currentBIO types will
only set one of these.

BIO_get_retry_BIO()determines the precise reason for the special condition, it returns theBIO that
caused this condition and ifreasonis notNULL it contains the reason code. The meaning of the reason
code and the action that should be taken depends on the type ofBIO that resulted in this condition.

BIO_get_retry_reason()returns the reason for a special condition if passed the relevantBIO, for exam-
ple as returned byBIO_get_retry_BIO().

NOTES
If BIO_should_retry()returns false then the precise ‘‘error condition’’ depends on theBIO type that
caused it and the return code of theBIO operation. For example if a call toBIO_read()on a socketBIO
returns 0 andBIO_should_retry()is false then the cause will be that the connection closed. A similar
condition on a fileBIO will mean that it has reachedEOF. SomeBIO types may place additional infor-
mation on the error queue. For more details see the individualBIO type manual pages.

If the underlying I/O structure is in a blocking mode almost all currentBIO types will not request a
retry, because the underlying I/O calls will not. If the application knows that theBIO type will never
signal a retry then it need not callBIO_should_retry()after a failedBIO I/O call. This is typically done
with file BIOs.

SSLBIOs are the only current exception to this rule: they can request a retry even if the underlying I/O
structure is blocking, if a handshake occurs during a call toBIO_read(). An application can retry the
failed call immediately or avoid this situation by settingSSL_MODE_AUTO_RETRYon the underlying
SSLstructure.

While an application may retry a failed non blocking call immediately this is likely to be very ineffi-
cient because the call will fail repeatedly until data can be processed or is available. An application will

132 2000-09-16 0.9.7c

BIO_should_retry(3) OpenSSL BIO_should_retry(3)

normally wait until the necessary condition is satisfied. How this is done depends on the underlying I/O
structure.

For example if the cause is ultimately a socket andBIO_should_read()is true then a call toselect()may
be made to wait until data is available and then retry theBIO operation. By combining the retry condi-
tions of several non blocking BIOs in a singleselect()call it is possible to service several BIOs in a sin-
gle thread, though the performance may be poor ifSSLBIOs are present because long delays can occur
during the initial handshake process.

It is possible for aBIO to block indefinitely if the underlying I/O structure cannot process or return any
data. This depends on the behaviour of the platforms I/O functions. This is often not desirable: one
solution is to use non blocking I/O and use a timeout on theselect()(or equivalent) call.

BUGS
The OpenSSLASN1 functions cannot gracefully deal with non blocking I/O: that is they cannot retry
after a partial read or write. This is usually worked around by only passing the relevant data toASN1
functions when the entire structure can be read or written.

SEE ALSO
TBA

0.9.7c 2000-09-16 133

blowfish(3) OpenSSL blowfish(3)

NAME
blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt, BF_cfb64_encrypt,
BF_ofb64_encrypt, BF_options − Blowfish encryption

SYNOPSIS
#include <openssl/blowfish.h>

void BF_set_key(BF_KEY *key, int len, const unsigned char *data);

void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
BF_KEY *key, int enc);

void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int enc);

void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int *num,
int enc);

void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, BF_KEY *schedule, unsigned char *ivec, int *num);

const char *BF_options(void);

void BF_encrypt(BF_LONG *data,const BF_KEY *key);
void BF_decrypt(BF_LONG *data,const BF_KEY *key);

DESCRIPTION
This library implements the Blowfish cipher, which was invented and described by Counterpane (see
http://www.counterpane.com/blowfish.html).

Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data. It uses a variable size key, but
typically, 128 bit (16 byte) keys are a considered good for strong encryption. Blowfish can be used in
the same modes asDES(seedes_modes(7)). Blowfish is currently one of the faster block ciphers. It is
quite a bit faster thanDES, and much faster thanIDEA or RC2.

Blowfish consists of a key setup phase and the actual encryption or decryption phase.

BF_set_key()sets up theBF_KEY key using thelen bytes long key atdata.

BF_ecb_encrypt()is the basic Blowfish encryption and decryption function. It encrypts or decrypts the
first 64 bits of in using the keykey, putting the result inout. enc decides if encryption
(BF_ENCRYPT) or decryption (BF_DECRYPT) shall be performed. The vector pointed at byin and
out must be 64 bits in length, no less. If they are larger, everything after the first 64 bits is ignored.

The mode functionsBF_cbc_encrypt(),BF_cfb64_encrypt()and BF_ofb64_encrypt()all operate on
variable length data. They all take an initialization vectorivec which needs to be passed along into the
next call of the same function for the same message.ivec may be initialized with anything, but the
recipient needs to know what it was initialized with, or it won’t be able to decrypt. Some programs and
protocols simplify this, likeSSH, whereivec is simply initialized to zero.BF_cbc_encrypt()operates
on data that is a multiple of 8 bytes long, whileBF_cfb64_encrypt()andBF_ofb64_encrypt()are used
to encrypt an variable number of bytes (the amount does not have to be an exact multiple of 8). The
purpose of the latter two is to simulate stream ciphers, and therefore, they need the parameternum,
which is a pointer to an integer where the current offset inivec is stored between calls. This integer
must be initialized to zero whenivec is initialized.

BF_cbc_encrypt()is the Cipher Block Chaining function for Blowfish. It encrypts or decrypts the 64
bits chunks ofin using the keyschedule, putting the result inout. enc decides if encryption
(BF_ENCRYPT) or decryption (BF_DECRYPT) shall be performed.ivec must point at an 8 byte long
initialization vector.

BF_cfb64_encrypt()is theCFB mode for Blowfish with 64 bit feedback. It encrypts or decrypts the
bytes inin using the keyschedule, putting the result inout. encdecides if encryption (BF_ENCRYPT)
or decryption (BF_DECRYPT) shall be performed.ivec must point at an 8 byte long initialization vec-
tor. num must point at an integer which must be initially zero.

BF_ofb64_encrypt()is theOFB mode for Blowfish with 64 bit feedback. It uses the same parameters
asBF_cfb64_encrypt(), which must be initialized the same way.

BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish encryption. They

134 2002-01-21 0.9.7c

blowfish(3) OpenSSL blowfish(3)

encrypt/decrypt the first 64 bits of the vector pointed bydata, using the keykey. These functions
should not be used unless you implement ’modes’ of Blowfish. The alternative is to use
BF_ecb_encrypt(). If you still want to use these functions, you should be aware that they take each
32−bit chunk in host-byte order, which is little-endian on little-endian platforms and big-endian on big-
endian ones.

RETURN VALUES
None of the functions presented here return any value.

NOTE
Applications should use the higher level functionsEVP_EncryptInit(3) etc. instead of calling the blow-
fish functions directly.

SEE ALSO
des_modes(7)

HISTORY
The Blowfish functions are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-01-21 135

bn(3) OpenSSL bn(3)

NAME
bn − multiprecision integer arithmetics

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_new(void);
void BN_free(BIGNUM *a);
void BN_init(BIGNUM *);
void BN_clear(BIGNUM *a);
void BN_clear_free(BIGNUM *a);

BN_CTX *BN_CTX_new(void);
void BN_CTX_init(BN_CTX *c);
void BN_CTX_free(BN_CTX *c);

BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
BIGNUM *BN_dup(const BIGNUM *a);

BIGNUM *BN_swap(BIGNUM *a, BIGNUM *b);

int BN_num_bytes(const BIGNUM *a);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG w);

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,

BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

BN_CTX *ctx);
int BN_mod_sub(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

BN_CTX *ctx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,

BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_add_word(BIGNUM *a, BN_ULONG w);
int BN_sub_word(BIGNUM *a, BN_ULONG w);
int BN_mul_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);
int BN_is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

136 2001-09-03 0.9.7c

bn(3) OpenSSL bn(3)

int BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);
const BIGNUM *BN_value_one(void);
int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get_word(BIGNUM *a);

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_rand_range(BIGNUM *rnd, BIGNUM *range);
int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

BIGNUM *BN_generate_prime(BIGNUM *ret, int bits,int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN_is_prime(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);

int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);
int BN_is_bit_set(const BIGNUM *a, int n);
int BN_mask_bits(BIGNUM *a, int n);
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, BIGNUM *a);
int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, BIGNUM *a);

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);
int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
BN_CTX *ctx);

BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);
int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,

BN_RECP_CTX *recp, BN_CTX *ctx);

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,

BN_MONT_CTX *mont, BN_CTX *ctx);
int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,

BN_CTX *ctx);
int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,

BN_CTX *ctx);

DESCRIPTION
This library performs arithmetic operations on integers of arbitrary size. It was written for use in public
key cryptography, such asRSA and Diffie−Hellman.

It uses dynamic memory allocation for storing its data structures. That means that there is no limit on
the size of the numbers manipulated by these functions, but return values must always be checked in

0.9.7c 2001-09-03 137

bn(3) OpenSSL bn(3)

case a memory allocation error has occurred.

The basic object in this library is aBIGNUM . It is used to hold a single large integer. This type should
be considered opaque and fields should not be modified or accessed directly.

The creation ofBIGNUM objects is described inBN_new(3); BN_add(3) describes most of the arith-
metic operations. Comparison is described inBN_cmp(3); BN_zero(3) describes certain assignments,
BN_rand(3) the generation of random numbers,BN_generate_prime(3) deals with prime numbers and
BN_set_bit(3) with bit operations. The conversion ofBIGNUM s to external formats is described in
BN_bn2bin(3).

SEE ALSO
bn_internal(3), dh(3), err (3), rand(3), rsa(3), BN_new(3), BN_CTX_new(3), BN_copy(3),
BN_swap(3), BN_num_bytes(3), BN_add(3), BN_add_word(3), BN_cmp(3), BN_zero(3),
BN_rand(3), BN_generate_prime(3), BN_set_bit(3), BN_bn2bin(3), BN_mod_inverse(3),
BN_mod_mul_reciprocal(3), BN_mod_mul_montgomery(3)

138 2001-09-03 0.9.7c

BN_add(3) OpenSSL BN_add(3)

NAME
BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub,
BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd − arithmetic operations on BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);

int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);

int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

DESCRIPTION
BN_add()addsa andb and places the result inr (r=a+b). r may be the sameBIGNUM asa or b.

BN_sub()subtractsb from a and places the result inr (r=a−b).

BN_mul()multipliesa andb and places the result inr (r=a*b). r may be the sameBIGNUM asa or b.
For multiplication by powers of 2, useBN_lshift(3).

BN_sqr()takes the square ofa and places the result inr (r=aˆ2). r anda may be the sameBIGNUM .
This function is faster than BN_mul(r,a,a).

BN_div()dividesa by d and places the result indv and the remainder inrem (dv=a/d, rem=a%d).
Either of dv and rem may beNULL , in which case the respective value is not returned. The result is
rounded towards zero; thus ifa is negative, the remainder will be zero or negative. For division by
powers of 2, useBN_rshift(3).

BN_mod()corresponds toBN_div()with dvset toNULL .

BN_nnmod()reducesa modulom and places the non-negative remainder inr.

BN_mod_add()addsa to b modulom and places the non-negative result inr.

BN_mod_sub()subtractsb from a modulom and places the non-negative result inr.

BN_mod_mul()multiplies a by b and finds the non-negative remainder respective to modulusm
(r=(a*b) mod m). r may be the sameBIGNUM asa or b. For more efficient algorithms for repeated
computations using the same modulus, seeBN_mod_mul_montgomery(3) andBN_mod_mul_recipro-
cal (3).

BN_mod_sqr()takes the square ofa modulom and places the result inr.

BN_exp()raisesa to thep−th power and places the result inr (r=aˆp). This function is faster than
repeated applications ofBN_mul().

0.9.7c 2002-09-25 139

BN_add(3) OpenSSL BN_add(3)

BN_mod_exp() computesa to thep−th power modulom (r=aˆp % m). This function uses less time
and space thanBN_exp().

BN_gcd()computes the greatest common divisor ofa andb and places the result inr. r may be the
sameBIGNUM asa or b.

For all functions, ctx is a previously allocatedBN_CTX used for temporary variables; see
BN_CTX_new(3).

Unless noted otherwise, the resultBIGNUM must be different from the arguments.

RETURN VALUES
For all functions, 1 is returned for success, 0 on error. The return value should always be checked (e.g.,
if (!BN_add(r,a,b)) goto err;). The error codes can be obtained byERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)

HISTORY
BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(),BN_mod_mul(), BN_mod_exp()and BN_gcd()
are available in all versions of SSLeay and OpenSSL. Thectx argument toBN_mul()was added in
SSLeay 0.9.1b.BN_exp()appeared in SSLeay 0.9.0.BN_nnmod(), BN_mod_add(),BN_mod_sub(),
andBN_mod_sqr()were added in OpenSSL 0.9.7.

140 2002-09-25 0.9.7c

BN_add_word(3) OpenSSL BN_add_word(3)

NAME
BN_add_word, BN_sub_word, BN_mul_word, BN_div_word, BN_mod_word − arithmetic functions
on BIGNUMs with integers

SYNOPSIS
#include <openssl/bn.h>

int BN_add_word(BIGNUM *a, BN_ULONG w);

int BN_sub_word(BIGNUM *a, BN_ULONG w);

int BN_mul_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

DESCRIPTION
These functions perform arithmetic operations on BIGNUMs with unsigned integers. They are much
more efficient than the normalBIGNUM arithmetic operations.

BN_add_word()addsw to a (a+=w).

BN_sub_word()subtractsw from a (a−=w).

BN_mul_word()multipliesa andw (a*=b).

BN_div_word()dividesa by w (a/=w) and returns the remainder.

BN_mod_word()returns the remainder ofa divided byw (a%m).

For BN_div_word()andBN_mod_word(),w must not be 0.

RETURN VALUES
BN_add_word(), BN_sub_word()andBN_mul_word()return 1 for success, 0 on error. The error codes
can be obtained byERR_get_error(3).

BN_mod_word()andBN_div_word()returna%w.

SEE ALSO
bn(3), ERR_get_error(3), BN_add(3)

HISTORY
BN_add_word() and BN_mod_word()are available in all versions of SSLeay and OpenSSL.
BN_div_word()was added in SSLeay 0.8, andBN_sub_word()andBN_mul_word()in SSLeay 0.9.0.

0.9.7c 2002-09-25 141

BN_bn2bin(3) OpenSSL BN_bn2bin(3)

NAME
BN_bn2bin, BN_bin2bn, BN_bn2hex, BN_bn2dec, BN_hex2bn, BN_dec2bn, BN_print, BN_print_fp,
BN_bn2mpi, BN_mpi2bn − format conversions

SYNOPSIS
#include <openssl/bn.h>

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);

char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);

int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);

int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

DESCRIPTION
BN_bn2bin()converts the absolute value ofa into big-endian form and stores it atto. to must point to
BN_num_bytes(a) bytes of memory.

BN_bin2bn()converts the positive integer in big-endian form of lengthlen at s into a BIGNUM and
places it inret. If ret is NULL, a newBIGNUM is created.

BN_bn2hex()andBN_bn2dec()return printable strings containing the hexadecimal and decimal encod-
ing of a respectively. For negative numbers, the string is prefaced with a leading ’−’. The string must be
freed later usingOPENSSL_free().

BN_hex2bn()converts the stringstr containing a hexadecimal number to aBIGNUM and stores it in
**bn. If * bn is NULL, a newBIGNUM is created. Ifbn is NULL, it only computes the number’s length
in hexadecimal digits. If the string starts with ’−’, the number is negative.BN_dec2bn()is the same
using the decimal system.

BN_print() and BN_print_fp()write the hexadecimal encoding ofa, with a leading ’−’ for negative
numbers, to theBIO or FILE fp.

BN_bn2mpi()andBN_mpi2bn()convertBIGNUM s from and to a format that consists of the number’s
length in bytes represented as a 4−byte big-endian number, and the number itself in big-endian format,
where the most significant bit signals a negative number (the representation of numbers with theMSB
set is prefixed with null byte).

BN_bn2mpi()stores the representation ofa at to, whereto must be large enough to hold the result. The
size can be determined by calling BN_bn2mpi(a,NULL).

BN_mpi2bn()converts thelen bytes long representation ats to aBIGNUM and stores it atret, or in a
newly allocatedBIGNUM if ret is NULL.

RETURN VALUES
BN_bn2bin() returns the length of the big-endian number placed atto. BN_bin2bn() returns the
BIGNUM , NULL on error.

BN_bn2hex()and BN_bn2dec()return a null-terminated string, orNULL on error.BN_hex2bn()and
BN_dec2bn()return the number’s length in hexadecimal or decimal digits, and 0 on error.

BN_print_fp()andBN_print()return 1 on success, 0 on write errors.

BN_bn2mpi()returns the length of the representation.BN_mpi2bn()returns theBIGNUM , andNULL on
error.

The error codes can be obtained byERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3), BN_zero(3), ASN1_INTEGER_to_BN(3), BN_num_bytes(3)

142 2002-09-25 0.9.7c

BN_bn2bin(3) OpenSSL BN_bn2bin(3)

HISTORY
BN_bn2bin(), BN_bin2bn(), BN_print_fp()andBN_print() are available in all versions of SSLeay and
OpenSSL.

BN_bn2hex(), BN_bn2dec(), BN_hex2bn(),BN_dec2bn(), BN_bn2mpi()andBN_mpi2bn()were added
in SSLeay 0.9.0.

0.9.7c 2002-09-25 143

BN_cmp(3) OpenSSL BN_cmp(3)

NAME
BN_cmp, BN_ucmp, BN_is_zero, BN_is_one, BN_is_word, BN_is_odd − BIGNUM comparison and
test functions

SYNOPSIS
#include <openssl/bn.h>

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);

int BN_is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

DESCRIPTION
BN_cmp()compares the numbersa andb. BN_ucmp()compares their absolute values.

BN_is_zero(), BN_is_one()andBN_is_word()test ifa equals 0, 1, orw respectively.BN_is_odd()tests
if a is odd.

BN_is_zero(), BN_is_one(), BN_is_word()andBN_is_odd()are macros.

RETURN VALUES
BN_cmp()returns −1 ifa < b, 0 if a == b and 1 ifa > b. BN_ucmp()is the same using the absolute val-
ues ofa andb.

BN_is_zero(), BN_is_one() BN_is_word()and BN_is_odd()return 1 if the condition is true, 0 other-
wise.

SEE ALSO
bn(3)

HISTORY
BN_cmp(), BN_ucmp(), BN_is_zero(),BN_is_one()andBN_is_word()are available in all versions of
SSLeay and OpenSSL.BN_is_odd()was added in SSLeay 0.8.

144 2000-01-27 0.9.7c

BN_copy(3) OpenSSL BN_copy(3)

NAME
BN_copy, BN_dup − copy BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_copy(BIGNUM *to, const BIGNUM *from);

BIGNUM *BN_dup(const BIGNUM *from);

DESCRIPTION
BN_copy()copiesfrom to to. BN_dup()creates a newBIGNUM containing the valuefrom.

RETURN VALUES
BN_copy()returnsto on success,NULL on error.BN_dup()returns the newBIGNUM , andNULL on
error. The error codes can be obtained byERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3)

HISTORY
BN_copy()andBN_dup()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 145

BN_CTX_new(3) OpenSSL BN_CTX_new(3)

NAME
BN_CTX_new, BN_CTX_init, BN_CTX_free − allocate and free BN_CTX structures

SYNOPSIS
#include <openssl/bn.h>

BN_CTX *BN_CTX_new(void);

void BN_CTX_init(BN_CTX *c);

void BN_CTX_free(BN_CTX *c);

DESCRIPTION
A BN_CTX is a structure that holdsBIGNUM temporary variables used by library functions. Since
dynamic memory allocation to createBIGNUM s is rather expensive when used in conjunction with
repeated subroutine calls, theBN_CTX structure is used.

BN_CTX_new()allocates and initializes aBN_CTX structure.BN_CTX_init() initializes an existing
uninitializedBN_CTX.

BN_CTX_free()frees the components of theBN_CTX, and if it was created byBN_CTX_new(), also the
structure itself. IfBN_CTX_start(3) has been used on theBN_CTX, BN_CTX_end(3) must be called
before theBN_CTX may be freed byBN_CTX_free().

RETURN VALUES
BN_CTX_new()returns a pointer to theBN_CTX. If the allocation fails, it returnsNULL and sets an
error code that can be obtained byERR_get_error(3).

BN_CTX_init()andBN_CTX_free()have no return values.

SEE ALSO
bn(3), ERR_get_error(3), BN_add(3), BN_CTX_start(3)

HISTORY
BN_CTX_new()and BN_CTX_free() are available in all versions on SSLeay and OpenSSL.
BN_CTX_init()was added in SSLeay 0.9.1b.

146 2002-09-25 0.9.7c

BN_CTX_start(3) OpenSSL BN_CTX_start(3)

NAME
BN_CTX_start, BN_CTX_get, BN_CTX_end − use temporary BIGNUM variables

SYNOPSIS
#include <openssl/bn.h>

void BN_CTX_start(BN_CTX *ctx);

BIGNUM *BN_CTX_get(BN_CTX *ctx);

void BN_CTX_end(BN_CTX *ctx);

DESCRIPTION
These functions are used to obtain temporaryBIGNUM variables from aBN_CTX (which can been cre-
ated by usingBN_CTX_new(3)) in order to save the overhead of repeatedly creating and freeing
BIGNUM s in functions that are called from inside a loop.

A function must callBN_CTX_start()first. Then,BN_CTX_get()may be called repeatedly to obtain
temporaryBIGNUM s. All BN_CTX_get()calls must be made before calling any other functions that use
thectx as an argument.

Finally, BN_CTX_end()must be called before returning from the function. WhenBN_CTX_end()is
called, theBIGNUM pointers obtained fromBN_CTX_get()become invalid.

RETURN VALUES
BN_CTX_start()andBN_CTX_end()return no values.

BN_CTX_get()returns a pointer to theBIGNUM , or NULL on error. OnceBN_CTX_get()has failed,
the subsequent calls will returnNULL as well, so it is sufficient to check the return value of the last
BN_CTX_get() call. In case of an error, an error code is set, which can be obtained by
ERR_get_error(3).

SEE ALSO
BN_CTX_new(3)

HISTORY
BN_CTX_start(), BN_CTX_get()andBN_CTX_end()were added in OpenSSL 0.9.5.

0.9.7c 2000-07-11 147

BN_generate_prime(3) OpenSSL BN_generate_prime(3)

NAME
BN_generate_prime, BN_is_prime, BN_is_prime_fasttest − generate primes and test for primality

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
void *), BN_CTX *ctx, void *cb_arg);

int BN_is_prime_fasttest(const BIGNUM *a, int checks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
int do_trial_division);

DESCRIPTION
BN_generate_prime()generates a pseudo-random prime number ofnum bits. If ret is not NULL , it
will be used to store the number.

If callback is notNULL , it is called as follows:

• callback(0, i, cb_arg)is called after generating the i−th potential prime number.

• While the number is being tested for primality,callback(1, j, cb_arg)is called as described below.

• When a prime has been found,callback(2, i, cb_arg)is called.

The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange:

If add is not NULL , the prime will fulfill the condition p %add == rem (p % add == 1 if rem ==
NULL) in order to suit a given generator.

If safeis true, it will be a safe prime (i.e. a prime p so that (p−1)/2 is also prime).

The PRNGmust be seeded prior to callingBN_generate_prime(). The prime number generation has a
negligible error probability.

BN_is_prime()andBN_is_prime_fasttest()test if the numbera is prime. The following tests are per-
formed until one of them shows thata is composite; ifa passes all these tests, it is considered prime.

BN_is_prime_fasttest(), when called withdo_trial_division == 1, first attempts trial division by a num-
ber of small primes; if no divisors are found by this test andcallback is not NULL , callback(1, −1,
cb_arg) is called. Ifdo_trial_division == 0, this test is skipped.

Both BN_is_prime()and BN_is_prime_fasttest()perform a Miller-Rabin probabilistic primality test
with checks iterations. Ifchecks == BN_prime_checks, a number of iterations is used that yields a
false positive rate of at most 2ˆ−80 for random input.

If callback is notNULL , callback(1, j, cb_arg) is called after the j−th iteration (j = 0, 1, ...).ctx is a
pre-allocatedBN_CTX (to save the overhead of allocating and freeing the structure in a loop), orNULL .

RETURN VALUES
BN_generate_prime()returns the prime number on success,NULL otherwise.

BN_is_prime()returns 0 if the number is composite, 1 if it is prime with an error probability of less
than 0.25ˆchecks, and −1 on error.

The error codes can be obtained byERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3), rand(3)

HISTORY
The cb_arg arguments toBN_generate_prime()and toBN_is_prime()were added in SSLeay 0.9.0.
The ret argument toBN_generate_prime()was added in SSLeay 0.9.1.BN_is_prime_fasttest()was
added in OpenSSL 0.9.5.

148 2003-01-13 0.9.7c

bn_internal(3) OpenSSL bn_internal(3)

NAME
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words,
bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_mul_high,
bn_sqr_normal, bn_sqr_recursive, bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low − BIGNUM library internal functions

SYNOPSIS
BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,

BN_ULONG w);
void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,

int num);
BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,

int num);

void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);

int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);

void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
int nb);

void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,

int dna,int dnb,BN_ULONG *tmp);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,

int n, int tna,int tnb, BN_ULONG *tmp);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,

int n2, BN_ULONG *tmp);
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,

int n2, BN_ULONG *tmp);

void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);

void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);

BIGNUM *bn_expand(BIGNUM *a, int bits);
BIGNUM *bn_wexpand(BIGNUM *a, int n);
BIGNUM *bn_expand2(BIGNUM *a, int n);
void bn_fix_top(BIGNUM *a);

void bn_check_top(BIGNUM *a);
void bn_print(BIGNUM *a);
void bn_dump(BN_ULONG *d, int n);
void bn_set_max(BIGNUM *a);
void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
void bn_set_low(BIGNUM *r, BIGNUM *a, int n);

DESCRIPTION
This page documents the internal functions used by the OpenSSLBIGNUM implementation. They are
described here to facilitate debugging and extending the library. They arenot to be used by applica-
tions.

0.9.7c 2002-05-30 149

bn_internal(3) OpenSSL bn_internal(3)

The BIGNUM structur e

typedef struct bignum_st
{
int top; /* index of last used d (most significant word) */
BN_ULONG *d; /* pointer to an array of ’BITS2’ bit chunks */
int max; /* size of the d array */
int neg; /* sign */
} BIGNUM;

The big number is stored ind, a malloc()ed array ofBN_ULONGs, least significant first. ABN_ULONG
can be either 16, 32 or 64 bits in size (BITS2), depending on the ’number of bits’ specified in
openssl/bn.h.

max is the size of thed array that has been allocated.top is the ’last’ entry being used, so for a value
of 4, bn.d[0]=4 and bn.top=1.neg is 1 if the number is negative. When aBIGNUM is 0, thed field can
beNULL andtop == 0.

Various routines in this library require the use of temporaryBIGNUM variables during their execution.
Since dynamic memory allocation to createBIGNUM s is rather expensive when used in conjunction
with repeated subroutine calls, theBN_CTX structure is used. This structure containsBN_CTX_NUM
BIGNUM s, seeBN_CTX_start(3).

Low-level arithmetic operations

These functions are implemented in C and for several platforms in assembly language:

bn_mul_words(rp , ap, num, w) operates on thenum word arraysrp and ap. It computesap * w,
places the result inrp , and returns the high word (carry).

bn_mul_add_words(rp , ap, num, w) operates on thenum word arraysrp andap. It computesap * w
+ rp , places the result inrp , and returns the high word (carry).

bn_sqr_words(rp , ap, n) operates on thenum word arrayap and the 2*num word arrayap. It com-
putesap * ap word−wise, and places the low and high bytes of the result inrp .

bn_div_words(h, l, d) divides the two word number (h,l) by d and returns the result.

bn_add_words(rp , ap, bp, num) operates on thenum word arraysap, bp and rp . It computesap +
bp, places the result inrp , and returns the high word (carry).

bn_sub_words(rp , ap, bp, num) operates on thenum word arraysap, bp and rp . It computesap −
bp, places the result inrp , and returns the carry (1 ifbp > ap, 0 otherwise).

bn_mul_comba4(r , a, b) operates on the 4 word arraysa andb and the 8 word arrayr. It computes
a*b and places the result inr.

bn_mul_comba8(r , a, b) operates on the 8 word arraysa andb and the 16 word arrayr. It computes
a*b and places the result inr.

bn_sqr_comba4(r, a, b) operates on the 4 word arraysa andb and the 8 word arrayr.

bn_sqr_comba8(r, a, b) operates on the 8 word arraysa andb and the 16 word arrayr.

The following functions are implemented in C:

bn_cmp_words(a, b, n) operates on then word arraysa andb. It returns 1, 0 and −1 ifa is greater
than, equal and less thanb.

bn_mul_normal(r, a, na, b, nb) operates on thena word arraya, thenb word arrayb and thena+nb
word arrayr. It computesa*b and places the result inr.

bn_mul_low_normal(r, a, b, n) operates on then word arraysr, a andb. It computes then low words
of a*b and places the result inr .

bn_mul_recursive(r , a, b, n2, dna, dnb, t) operates on the word arraysa andb of lengthn2+dna and
n2+dnb (dna anddnb are currently allowed to be 0 or negative) and the 2*n2 word arraysr andt. n2
must be a power of 2. It computesa*b and places the result inr.

bn_mul_part_recursive(r, a, b, n, tna, tnb, tmp) operates on the word arraysa andb of lengthn+tna
andn+tnb and the 4*n word arraysr andtmp.

150 2002-05-30 0.9.7c

bn_internal(3) OpenSSL bn_internal(3)

bn_mul_low_recursive(r, a, b, n2, tmp) operates on then2 word arraysr andtmp and then2/2 word
arraysa andb.

bn_mul_high(r , a, b, l, n2, tmp) operates on then2 word arraysr, a, b and l (?) and the 3*n2 word
arraytmp.

BN_mul()calls bn_mul_normal(), or an optimized implementation if the factors have the same size:
bn_mul_comba8()is used if they are 8 words long,bn_mul_recursive()if they are larger than
BN_MULL_SIZE_NORMAL and the size is an exact multiple of the word size, andbn_mul_part_recur-
sive()for others that are larger thanBN_MULL_SIZE_NORMAL .

bn_sqr_normal(r , a, n, tmp) operates on then word arraya and the 2*nword arraystmp andr.

The implementations use the following macros which, depending on the architecture, may use ‘‘long
long’’ C operations or inline assembler. They are defined inbn_lcl.h .

mul(r, a, w, c) computesw*a+cand places the low word of the result inr and the high word inc.

mul_add(r , a, w, c) computesw*a+r+c and places the low word of the result inr and the high word in
c.

sqr(r0, r1, a) computesa*a and places the low word of the result inr0 and the high word inr1.

Size changes

bn_expand()ensures thatb has enough space for abits bit number. bn_wexpand()ensures thatb has
enough space for ann word number. If the number has to be expanded, both macros call
bn_expand2(), which allocates a newd array and copies the data. They returnNULL on error,b other-
wise.

The bn_fix_top()macro reducesa−>top to point to the most significant non-zero word whena has
shrunk.

Debugging

bn_check_top()verifies that((a)−>top >= 0 && (a)−>top <= (a)−>max). A violation
will cause the program to abort.

bn_print()printsa to stderr.bn_dump()printsn words atd (in reverse order, i.e. most significant word
first) to stderr.

bn_set_max()makesa a static number with amax of its current size. This is used bybn_set_low()and
bn_set_high()to maker a read-onlyBIGNUM that contains then low or high words ofa.

If BN_DEBUG is not defined,bn_check_top(),bn_print(), bn_dump()andbn_set_max()are defined as
empty macros.

SEE ALSO
bn(3)

0.9.7c 2002-05-30 151

BN_mod_inverse(3) OpenSSL BN_mod_inverse(3)

NAME
BN_mod_inverse − compute inverse modulo n

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
BN_CTX *ctx);

DESCRIPTION
BN_mod_inverse()computes the inverse ofa modulon places the result inr ((a*r)%n==1). If r is
NULL, a newBIGNUM is created.

ctx is a previously allocatedBN_CTX used for temporary variables.r may be the sameBIGNUM asa
or n.

RETURN VALUES
BN_mod_inverse()returns theBIGNUM containing the inverse, andNULL on error. The error codes can
be obtained byERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3), BN_add(3)

HISTORY
BN_mod_inverse()is available in all versions of SSLeay and OpenSSL.

152 2002-09-25 0.9.7c

BN_mod_mul_montgomery(3) OpenSSL BN_mod_mul_montgomery(3)

NAME
BN_mod_mul_montgomery, BN_MONT_CTX_new, BN_MONT_CTX_init, BN_MONT_CTX_free,
BN_MONT_CTX_set, BN_MONT_CTX_copy, BN_from_montgomery, BN_to_montgomery − Mont-
gomery multiplication

SYNOPSIS
#include <openssl/bn.h>

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);

int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);

int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);

DESCRIPTION
These functions implement Montgomery multiplication. They are used automatically when
BN_mod_exp(3) is called with suitable input, but they may be useful when several operations are to be
performed using the same modulus.

BN_MONT_CTX_new()allocates and initializes aBN_MONT_CTX structure. BN_MONT_CTX_init()
initializes an existing uninitializedBN_MONT_CTX .

BN_MONT_CTX_set()sets up themontstructure from the modulusm by precomputing its inverse and
a value R.

BN_MONT_CTX_copy()copies theBN_MONT_CTX from to to.

BN_MONT_CTX_free()frees the components of theBN_MONT_CTX , and, if it was created by
BN_MONT_CTX_new(), also the structure itself.

BN_mod_mul_montgomery()computes Mont(a,b):=a*b*Rˆ−1 and places the result inr.

BN_from_montgomery()performs the Montgomery reductionr = a*Rˆ−1.

BN_to_montgomery()computes Mont(a,Rˆ2), i.e.a*R. Note thata must be non-negative and smaller
than the modulus.

For all functions,ctx is a previously allocatedBN_CTX used for temporary variables.

TheBN_MONT_CTX structure is defined as follows:

typedef struct bn_mont_ctx_st
{
int ri; /* number of bits in R */
BIGNUM RR; /* Rˆ2 (used to convert to Montgomery form) */
BIGNUM N; /* The modulus */
BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1

* (Ni is only stored for bignum algorithm) */
BN_ULONG n0; /* least significant word of Ni */
int flags;
} BN_MONT_CTX;

BN_to_montgomery()is a macro.

RETURN VALUES
BN_MONT_CTX_new()returns the newly allocatedBN_MONT_CTX , andNULL on error.

BN_MONT_CTX_init()andBN_MONT_CTX_free()have no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by

0.9.7c 2002-09-25 153

BN_mod_mul_montgomery(3) OpenSSL BN_mod_mul_montgomery(3)

ERR_get_error(3).

WARNING
The inputs must be reduced modulom, otherwise the result will be outside the expected range.

SEE ALSO
bn(3), ERR_get_error(3), BN_add(3), BN_CTX_new(3)

HISTORY
BN_MONT_CTX_new(), BN_MONT_CTX_free(), BN_MONT_CTX_set(), BN_mod_mul_mont-
gomery(),BN_from_montgomery()and BN_to_montgomery()are available in all versions of SSLeay
and OpenSSL.

BN_MONT_CTX_init()andBN_MONT_CTX_copy()were added in SSLeay 0.9.1b.

154 2002-09-25 0.9.7c

BN_mod_mul_reciprocal(3) OpenSSL BN_mod_mul_reciprocal(3)

NAME
BN_mod_mul_reciprocal, BN_div_recp, BN_RECP_CTX_new, BN_RECP_CTX_init,
BN_RECP_CTX_free, BN_RECP_CTX_set − modular multiplication using reciprocal

SYNOPSIS
#include <openssl/bn.h>

BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);

int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

int BN_div_recp(BIGNUM *dv, BIGNUM *rem, BIGNUM *a, BN_RECP_CTX *recp,
BN_CTX *ctx);

int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
BN_RECP_CTX *recp, BN_CTX *ctx);

DESCRIPTION
BN_mod_mul_reciprocal()can be used to perform an efficientBN_mod_mul(3) operation when the
operation will be performed repeatedly with the same modulus. It computesr=(a*b)%m using
recp=1/m, which is set as described below.ctx is a previously allocatedBN_CTX used for temporary
variables.

BN_RECP_CTX_new() allocates and initializes aBN_RECP structure. BN_RECP_CTX_init()initial-
izes an existing uninitializedBN_RECP.

BN_RECP_CTX_free()frees the components of theBN_RECP, and, if it was created by
BN_RECP_CTX_new(), also the structure itself.

BN_RECP_CTX_set()storesm in recp and sets it up for computing 1/m and shifting it left by
BN_num_bits(m)+1 to make it an integer. The result and the number of bits it was shifted left will later
be stored inrecp.

BN_div_recp()dividesa by m usingrecp. It places the quotient indv and the remainder inrem.

TheBN_RECP_CTX structure is defined as follows:

typedef struct bn_recp_ctx_st
{
BIGNUM N; /* the divisor */
BIGNUM Nr; /* the reciprocal */
int num_bits;
int shift;
int flags;
} BN_RECP_CTX;

It cannot be shared between threads.

RETURN VALUES
BN_RECP_CTX_new()returns the newly allocatedBN_RECP_CTX, andNULL on error.

BN_RECP_CTX_init()andBN_RECP_CTX_free()have no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by
ERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3), BN_add(3), BN_CTX_new(3)

HISTORY
BN_RECP_CTX was added in SSLeay 0.9.0. Before that, the functionBN_reciprocal() was used
instead, and theBN_mod_mul_reciprocal()arguments were different.

0.9.7c 2002-09-25 155

BN_new(3) OpenSSL BN_new(3)

NAME
BN_new, BN_init, BN_clear, BN_free, BN_clear_free − allocate and free BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

BIGNUM *BN_new(void);

void BN_init(BIGNUM *);

void BN_clear(BIGNUM *a);

void BN_free(BIGNUM *a);

void BN_clear_free(BIGNUM *a);

DESCRIPTION
BN_new()allocated and initializes aBIGNUM structure.BN_init() initializes an existing uninitialized
BIGNUM .

BN_clear()is used to destroy sensitive data such as keys when they are no longer needed. It erases the
memory used bya and sets it to the value 0.

BN_free()frees the components of theBIGNUM , and if it was created byBN_new(), also the structure
itself. BN_clear_free()additionally overwrites the data before the memory is returned to the system.

RETURN VALUES
BN_new()returns a pointer to theBIGNUM . If the allocation fails, it returnsNULL and sets an error
code that can be obtained byERR_get_error(3).

BN_init(), BN_clear(), BN_free()andBN_clear_free()have no return values.

SEE ALSO
bn(3), ERR_get_error(3)

HISTORY
BN_new(),BN_clear(), BN_free()and BN_clear_free()are available in all versions on SSLeay and
OpenSSL.BN_init()was added in SSLeay 0.9.1b.

156 2002-09-25 0.9.7c

BN_num_bytes(3) OpenSSL BN_num_bytes(3)

NAME
BN_num_bits, BN_num_bytes, BN_num_bits_word − get BIGNUM size

SYNOPSIS
#include <openssl/bn.h>

int BN_num_bytes(const BIGNUM *a);

int BN_num_bits(const BIGNUM *a);

int BN_num_bits_word(BN_ULONG w);

DESCRIPTION
These functions return the size of aBIGNUM in bytes or bits, and the size of an unsigned integer in
bits.

BN_num_bytes()is a macro.

RETURN VALUES
The size.

SEE ALSO
bn(3)

HISTORY
BN_num_bytes(), BN_num_bits()andBN_num_bits_word()are available in all versions of SSLeay and
OpenSSL.

0.9.7c 2000-02-24 157

BN_rand(3) OpenSSL BN_rand(3)

NAME
BN_rand, BN_pseudo_rand − generate pseudo−random number

SYNOPSIS
#include <openssl/bn.h>

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_rand_range(BIGNUM *rnd, BIGNUM *range);

int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

DESCRIPTION
BN_rand()generates a cryptographically strong pseudo-random number ofbits bits in length and stores
it in rnd . If top is −1, the most significant bit of the random number can be zero. Iftop is 0, it is set to
1, and iftop is 1, the two most significant bits of the number will be set to 1, so that the product of two
such random numbers will always have 2*bits length. Ifbottom is true, the number will be odd.

BN_pseudo_rand()does the same, but pseudo-random numbers generated by this function are not nec-
essarily unpredictable. They can be used for non-cryptographic purposes and for certain purposes in
cryptographic protocols, but usually not for key generation etc.

BN_rand_range()generates a cryptographically strong pseudo-random numberrnd in the range 0
<lt>= rnd < range. BN_pseudo_rand_range()does the same, but is based onBN_pseudo_rand(), and
hence numbers generated by it are not necessarily unpredictable.

ThePRNGmust be seeded prior to callingBN_rand()or BN_rand_range().

RETURN VALUES
The functions return 1 on success, 0 on error. The error codes can be obtained byERR_get_error(3).

SEE ALSO
bn(3), ERR_get_error(3), rand(3), RAND_add(3), RAND_bytes(3)

HISTORY
BN_rand() is available in all versions of SSLeay and OpenSSL.BN_pseudo_rand()was added in
OpenSSL 0.9.5. Thetop == −1 case and the functionBN_rand_range()were added in OpenSSL
0.9.6a.BN_pseudo_rand_range()was added in OpenSSL 0.9.6c.

158 2002-09-25 0.9.7c

BN_set_bit(3) OpenSSL BN_set_bit(3)

NAME
BN_set_bit, BN_clear_bit, BN_is_bit_set, BN_mask_bits, BN_lshift, BN_lshift1, BN_rshift,
BN_rshift1 − bit operations on BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);

int BN_is_bit_set(const BIGNUM *a, int n);

int BN_mask_bits(BIGNUM *a, int n);

int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, BIGNUM *a);

int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, BIGNUM *a);

DESCRIPTION
BN_set_bit()sets bitn in a to 1 (a =(1<<n)). The number is expanded if necessary.

BN_clear_bit()sets bitn in a to 0 (a&=˜(1<<n)). An error occurs ifa is shorter thann bits.

BN_is_bit_set()tests if bitn in a is set.

BN_mask_bits()truncatesa to ann bit number (a&=˜((˜0)>>n)). An error occurs if a already is
shorter thann bits.

BN_lshift()shiftsa left by n bits and places the result inr (r=a*2ˆn). BN_lshift1()shiftsa left by one
and places the result inr (r=2*a).

BN_rshift()shiftsa right by n bits and places the result inr (r=a/2ˆn). BN_rshift1()shiftsa right by
one and places the result inr (r=a/2).

For the shift functions,r anda may be the same variable.

RETURN VALUES
BN_is_bit_set()returns 1 if the bit is set, 0 otherwise.

All other functions return 1 for success, 0 on error. The error codes can be obtained by
ERR_get_error(3).

SEE ALSO
bn(3), BN_num_bytes(3), BN_add(3)

HISTORY
BN_set_bit(), BN_clear_bit(), BN_is_bit_set(),BN_mask_bits(), BN_lshift(), BN_lshift1(), BN_rshift(),
andBN_rshift1()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2000-02-24 159

BN_swap(3) OpenSSL BN_swap(3)

NAME
BN_swap − exchange BIGNUMs

SYNOPSIS
#include <openssl/bn.h>

void BN_swap(BIGNUM *a, BIGNUM *b);

DESCRIPTION
BN_swap()exchanges the values ofa andb.

bn(3)

HISTORY
BN_swap was added in OpenSSL 0.9.7.

160 2000-11-26 0.9.7c

BN_zero(3) OpenSSL BN_zero(3)

NAME
BN_zero, BN_one, BN_value_one, BN_set_word, BN_get_word − BIGNUM assignment operations

SYNOPSIS
#include <openssl/bn.h>

int BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);

const BIGNUM *BN_value_one(void);

int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get_word(BIGNUM *a);

DESCRIPTION
BN_zero(), BN_one()andBN_set_word()seta to the values 0, 1 andw respectively.BN_zero()and
BN_one()are macros.

BN_value_one()returns aBIGNUM constant of value 1. This constant is useful for use in comparisons
and assignment.

BN_get_word()returnsa, if it can be represented as an unsigned long.

RETURN VALUES
BN_get_word()returns the valuea, and 0xffffffffL if a cannot be represented as an unsigned long.

BN_zero(), BN_one()andBN_set_word()return 1 on success, 0 otherwise.BN_value_one()returns the
constant.

BUGS
Someone might change the constant.

If a BIGNUM is equal to 0xffffffffL it can be represented as an unsigned long but this value is also
returned on error.

SEE ALSO
bn(3), BN_bn2bin(3)

HISTORY
BN_zero(), BN_one()and BN_set_word()are available in all versions of SSLeay and OpenSSL.
BN_value_one()andBN_get_word()were added in SSLeay 0.8.

BN_value_one()was changed to return a true constBIGNUM * in OpenSSL 0.9.7.

0.9.7c 2002-07-18 161

buffer(3) OpenSSL buffer(3)

NAME
BUF_MEM_new, BUF_MEM_free, BUF_MEM_grow, BUF_strdup − simple character arrays struc-
ture

SYNOPSIS
#include <openssl/buffer.h>

BUF_MEM *BUF_MEM_new(void);

void BUF_MEM_free(BUF_MEM *a);

int BUF_MEM_grow(BUF_MEM *str, int len);

char * BUF_strdup(const char *str);

DESCRIPTION
The buffer library handles simple character arrays. Buffers are used for various purposes in the library,
most notably memory BIOs.

The library uses theBUF_MEM structure defined in buffer.h:

typedef struct buf_mem_st
{

int length; /* current number of bytes */
char *data;
int max; /* size of buffer */

} BUF_MEM;

length is the current size of the buffer in bytes,max is the amount of memory allocated to the buffer.
There are three functions which handle these and one ‘‘miscellaneous’’ function.

BUF_MEM_new()allocates a new buffer of zero size.

BUF_MEM_free()frees up an already existing buffer. The data is zeroed before freeing up in case the
buffer contains sensitive data.

BUF_MEM_grow()changes the size of an already existing buffer tolen. Any data already in the buffer
is preserved if it increases in size.

BUF_strdup()copies a null terminated string into a block of allocated memory and returns a pointer to
the allocated block. Unlike the standard C librarystrdup() this function usesOPENSSL_malloc()and
so should be used in preference to the standard librarystrdup()because it can be used for memory leak
checking or replacing themalloc()function.

The memory allocated fromBUF_strdup()should be freed up using theOPENSSL_free()function.

RETURN VALUES
BUF_MEM_new()returns the buffer orNULL on error.

BUF_MEM_free()has no return value.

BUF_MEM_grow()returns zero on error or the new size (i.e.len).

SEE ALSO
bio (3)

HISTORY
BUF_MEM_new(), BUF_MEM_free()andBUF_MEM_grow()are available in all versions of SSLeay
and OpenSSL.BUF_strdup()was added in SSLeay 0.8.

162 2000-09-20 0.9.7c

crypto(3) OpenSSL crypto(3)

NAME
crypto − OpenSSL cryptographic library

SYNOPSIS
DESCRIPTION

The OpenSSLcrypto library implements a wide range of cryptographic algorithms used in various
Internet standards. The services provided by this library are used by the OpenSSL implementations of
SSL, TLS and S/MIME, and they hav e also been used to implementSSH, OpenPGP, and other crypto-
graphic standards.

OVERVIEW
libcrypto consists of a number of sub-libraries that implement the individual algorithms.

The functionality includes symmetric encryption, public key cryptography and key agreement, certifi-
cate handling, cryptographic hash functions and a cryptographic pseudo-random number generator.

SYMMETRIC CIPHERS
blowfish(3), cast(3), des(3), idea(3), rc2 (3), rc4 (3), rc5 (3)

PUBLIC KEY CRYPTOGRAPHY AND KEY AGREEMENT
dsa(3), dh(3), rsa(3)

CERTIFICATES
x509(3), x509v3(3)

AUTHENTICATION CODES, HASH FUNCTIONS
hmac(3), md2(3), md4(3), md5(3), mdc2(3), ripemd(3), sha(3)

AUXILIARY FUNCTIONS
err (3), threads(3), rand(3), OPENSSL_VERSION_NUMBER(3)

INPUT/OUTPUT, DATA ENCODING
asn1(3), bio (3), evp(3), pem(3), pkcs7(3), pkcs12(3)

INTERNAL FUNCTIONS
bn(3), buffer(3), lhash(3), objects(3), stack(3), txt_db(3)

NOTES
Some of the newer functions follow a naming convention using the numbers0 and1. For example the
functions:

int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev);
int X509_add1_trust_object(X509 *x, ASN1_OBJECT *obj);

The0 version uses the supplied structure pointer directly in the parent and it will be freed up when the
parent is freed. In the above examplecrl would be freed butre v would not.

The1 function uses a copy of the supplied structure pointer (or in some cases increases its link count)
in the parent and so both (x andobj above) should be freed up.

SEE ALSO
openssl(1), ssl(3)

0.9.7c 2002-10-09 163

CRYPTO_set_ex_data(3) OpenSSL CRYPTO_set_ex_data(3)

NAME
CRYPTO_set_ex_data, CRYPTO_get_ex_data − internal application specific data functions

SYNOPSIS
int CRYPTO_set_ex_data(CRYPTO_EX_DATA *r, int idx, void *arg);

void *CRYPTO_get_ex_data(CRYPTO_EX_DATA *r, int idx);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

These functions should only be used by applications to manipulateCRYPTO_EX_DAT A structures
passed to the new_func(), free_func() and dup_func() callbacks: as passed to
RSA_get_ex_new_index() for example.

CRYPTO_set_ex_data() is used to set application specific data, the data is supplied in thearg parame-
ter and its precise meaning is up to the application.

CRYPTO_get_ex_data() is used to retrieve application specific data. The data is returned to the appli-
cation, this will be the same value as supplied to a previousCRYPTO_set_ex_data() call.

RETURN VALUES
CRYPTO_set_ex_data() returns 1 on success or 0 on failure.

CRYPTO_get_ex_data() returns the application data or 0 on failure. 0 may also be valid application
data but currently it can only fail if given an inv alididx parameter.

On failure an error code can be obtained fromERR_get_error(3).

SEE ALSO
RSA_get_ex_new_index(3), DSA_get_ex_new_index(3), DH_get_ex_new_index(3)

HISTORY
CRYPTO_set_ex_data()andCRYPTO_get_ex_data()have been available since SSLeay 0.9.0.

164 2000-01-30 0.9.7c

d2i_ASN1_OBJECT(3) OpenSSL d2i_ASN1_OBJECT(3)

NAME
d2i_ASN1_OBJECT, i2d_ASN1_OBJECT − ASN1 OBJECT IDENTIFIER functions

SYNOPSIS
#include <openssl/objects.h>

ASN1_OBJECT *d2i_ASN1_OBJECT(ASN1_OBJECT **a, unsigned char **pp, long length);
int i2d_ASN1_OBJECT(ASN1_OBJECT *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode anASN1 OBJECT IDENTIFIER.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3)
manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.7c 2002-10-09 165

d2i_DHparams(3) OpenSSL d2i_DHparams(3)

NAME
d2i_DHparams, i2d_DHparams − PKCS#3 DH parameter functions.

SYNOPSIS
#include <openssl/dh.h>

DH *d2i_DHparams(DH **a, unsigned char **pp, long length);
int i2d_DHparams(DH *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode PKCS#3DH parameters using the DHparameter structure
described in PKCS#3.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3)
manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

166 2002-10-09 0.9.7c

d2i_DSAPublicKey(3) OpenSSL d2i_DSAPublicKey(3)

NAME
d2i_DSAPublicKey, i2d_DSAPublicKey, d2i_DSAPrivateKey, i2d_DSAPrivateKey, d2i_DSA_PUB-
KEY, i2d_DSA_PUBKEY, d2i_DSA_SIG, i2d_DSA_SIG − DSA key encoding and parsing functions.

SYNOPSIS
#include <openssl/dsa.h>

DSA * d2i_DSAPublicKey(DSA **a, const unsigned char **pp, long length);

int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length);

int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp);

DSA * d2i_DSAPrivateKey(DSA **a, const unsigned char **pp, long length);

int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSAparams(DSA **a, const unsigned char **pp, long length);

int i2d_DSAparams(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_SIG(DSA_SIG **a, const unsigned char **pp, long length);

int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);

DESCRIPTION
d2i_DSAPublicKey() and i2d_DSAPublicKey()decode and encode theDSA public key components
structure.

d2i_DSA_PUKEY()and i2d_DSA_PUKEY()decode and encode anDSA public key using a Subject-
PublicKeyInfo (certificate public key) structure.

d2i_DSAPrivateKey(), i2d_DSAPrivateKey()decode and encode theDSA private key components.

d2i_DSAparams(), i2d_DSAparams()decode and encode theDSA parameters using aDss-Parms
structure as defined inRFC2459.

d2i_DSA_SIG(), i2d_DSA_SIG()decode and encode aDSA signature using aDss-Sig-Valuestructure
as defined inRFC2459.

The usage of all of these functions is similar to thed2i_X509()and i2d_X509()described in the
d2i_X509(3) manual page.

NOTES
TheDSA structure passed to the private key encoding functions should have all the private key compo-
nents present.

The data encoded by the private key functions is unencrypted and therefore offers no private key secu-
rity.

The DSA_PUBKEY functions should be used in preference to theDSAPublicKey functions when
encoding public keys because they use a standard format.

TheDSAPublicKey functions use an non standard format the actual data encoded depends on the value
of the write_params field of thea key parameter. Ifwrite_params is zero then only thepub_key
field is encoded as anINTEGER . If write_params is 1 then aSEQUENCE consisting of thep, q, g and
pub_key respectively fields are encoded.

The DSAPrivateKey functions also use a non standard structure consiting consisting of aSEQUENCE
containing thep, q, g andpub_keyandpriv_key fields respectively.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.7c 2002-10-09 167

d2i_PKCS8PrivateKey(3) OpenSSL d2i_PKCS8PrivateKey(3)

NAME
d2i_PKCS8PrivateKey_bio, d2i_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_bio, i2d_PKCS8Pri-
vateKey_fp, i2d_PKCS8PrivateKey_nid_bio, i2d_PKCS8PrivateKey_nid_fp − PKCS#8 format private
key functions

SYNOPSIS
#include <openssl/evp.h>

EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u);
EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
char *kstr, int klen,
pem_password_cb *cb, void *u);

DESCRIPTION
The PKCS#8 functions encode and decode private keys in PKCS#8 format using both PKCS#5 v1.5
and PKCS#5 v2.0 password based encryption algorithms.

Other than the use ofDER as opposed toPEM these functions are identical to the correspondingPEM
function as described in thepem(3) manual page.

NOTES
Before using these functionsOpenSSL_add_all_algorithms(3) should be called to initialize the internal
algorithm lookup tables otherwise errors about unknown algorithms will occur if an attempt is made to
decrypt a private key.

These functions are currently the only way to store encrypted private keys usingDER format.

Currently all the functions use BIOs orFILE pointers, there are no functions which work directly on
memory: this can be readily worked around by converting the buffers to memory BIOs, see
BIO_s_mem(3) for details.

SEE ALSO
pem(3)

168 2002-10-09 0.9.7c

d2i_RSAPublicKey(3) OpenSSL d2i_RSAPublicKey(3)

NAME
d2i_RSAPublicKey, i2d_RSAPublicKey, d2i_RSAPrivateKey, i2d_RSAPrivateKey, d2i_RSA_PUB-
KEY, i2d_RSA_PUBKEY, i2d_Netscape_RSA, d2i_Netscape_RSA − RSA public and private key
encoding functions.

SYNOPSIS
#include <openssl/rsa.h>

RSA * d2i_RSAPublicKey(RSA **a, unsigned char **pp, long length);

int i2d_RSAPublicKey(RSA *a, unsigned char **pp);

RSA * d2i_RSA_PUBKEY(RSA **a, unsigned char **pp, long length);

int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp);

RSA * d2i_RSAPrivateKey(RSA **a, unsigned char **pp, long length);

int i2d_RSAPrivateKey(RSA *a, unsigned char **pp);

int i2d_Netscape_RSA(RSA *a, unsigned char **pp, int (*cb)());

RSA * d2i_Netscape_RSA(RSA **a, unsigned char **pp, long length, int (*cb)());

DESCRIPTION
d2i_RSAPublicKey()and i2d_RSAPublicKey()decode and encode a PKCS#1 RSAPublicKey structure.

d2i_RSA_PUKEY()andi2d_RSA_PUKEY()decode and encode anRSA public key using a SubjectPub-
licKeyInfo (certificate public key) structure.

d2i_RSAPrivateKey(), i2d_RSAPrivateKey()decode and encode a PKCS#1 RSAPrivateKey structure.

d2i_Netscape_RSA(), i2d_Netscape_RSA()decode and encode anRSA private key inNET format.

The usage of all of these functions is similar to thed2i_X509()and i2d_X509()described in the
d2i_X509(3) manual page.

NOTES
TheRSA structure passed to the private key encoding functions should have all the PKCS#1 private key
components present.

The data encoded by the private key functions is unencrypted and therefore offers no private key secu-
rity.

TheNET format functions are present to provide compatibility with certain very old software. This for-
mat has some severe security weaknesses and should be avoided if possible.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.7c 2002-10-09 169

d2i_SSL_SESSION(3) OpenSSL d2i_SSL_SESSION(3)

NAME
d2i_SSL_SESSION, i2d_SSL_SESSION − convert SSL_SESSION object from/to ASN1 representa-
tion

SYNOPSIS
#include <openssl/ssl.h>

SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, unsigned char **pp, long length);
int i2d_SSL_SESSION(SSL_SESSION *in, unsigned char **pp);

DESCRIPTION
d2i_SSL_SESSION()transforms the externalASN1 representation of anSSL/TLS session, stored as
binary data at locationpp with lengthlength, into anSSL_SESSIONobject.

i2d_SSL_SESSION()transforms theSSL_SESSIONobject in into theASN1 representation and stores it
into the memory location pointed to bypp. The length of the resultingASN1 representation is returned.
If pp is theNULL pointer, only the length is calculated and returned.

NOTES
The SSL_SESSIONobject is built from severalmalloc()ed parts, it can therefore not be moved, copied
or stored directly. In order to store session data on disk or into a database, it must be transformed into a
binaryASN1 representation.

When usingd2i_SSL_SESSION(), the SSL_SESSIONobject is automatically allocated. The reference
count is 1, so that the session must be explicitly removed usingSSL_SESSION_free(3), unless the
SSL_SESSIONobject is completely taken over, when being called inside theget_session_cb()(see
SSL_CTX_sess_set_get_cb(3)).

SSL_SESSIONobjects keep internal link information about the session cache list, when being inserted
into oneSSL_CTXobject’s session cache. OneSSL_SESSIONobject, regardless of its reference count,
must therefore only be used with oneSSL_CTXobject (and theSSLobjects created from thisSSL_CTX
object).

When usingi2d_SSL_SESSION(), the memory location pointed to bypp must be large enough to hold
the binary representation of the session. There is no known limit on the size of the createdASN1 repre-
sentation, so the necessary amount of space should be obtained by first callingi2d_SSL_SESSION()
with pp=NULL, and obtain the size needed, then allocate the memory and calli2d_SSL_SESSION()
again.

RETURN VALUES
d2i_SSL_SESSION()returns a pointer to the newly allocatedSSL_SESSIONobject. In case of failure the
NULL-pointer is returned and the error message can be retrieved from the error stack.

i2d_SSL_SESSION()returns the size of theASN1 representation in bytes. When the session is not
valid, 0 is returned and no operation is performed.

SEE ALSO
ssl(3), SSL_SESSION_free(3), SSL_CTX_sess_set_get_cb(3)

170 2001-10-12 0.9.7c

d2i_X509(3) OpenSSL d2i_X509(3)

NAME
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio, i2d_X509_fp − X509 encode and
decode functions

SYNOPSIS
#include <openssl/x509.h>

X509 *d2i_X509(X509 **px, unsigned char **in, int len);
int i2d_X509(X509 *x, unsigned char **out);

X509 *d2i_X509_bio(BIO *bp, X509 **x);
X509 *d2i_X509_fp(FILE *fp, X509 **x);

int i2d_X509_bio(X509 *x, BIO *bp);
int i2d_X509_fp(X509 *x, FILE *fp);

DESCRIPTION
The X509 encode and decode routines encode and parse anX509 structure, which represents an X509
certificate.

d2i_X509()attempts to decodelen bytes at*out. If successful a pointer to theX509 structure is
returned. If an error occurred thenNULL is returned. Ifpx is notNULL then the returned structure is
written to*px. If *px is notNULL then it is assumed that*px contains a validX509 structure and an
attempt is made to reuse it. If the call is successful*out is incremented to the byte following the parsed
data.

i2d_X509()encodes the structure pointed to byx into DER format. If out is not NULL is writes the
DER encoded data to the buffer at*out, and increments it to point after the data just written. If the
return value is negative an error occurred, otherwise it returns the length of the encoded data.

For OpenSSL 0.9.7 and later if*out is NULL memory will be allocated for a buffer and the encoded
data written to it. In this case*out is not incremented and it points to the start of the data just written.

d2i_X509_bio()is similar tod2i_X509()except it attempts to parse data fromBIO bp.

d2i_X509_fp()is similar tod2i_X509()except it attempts to parse data fromFILE pointerfp.

i2d_X509_bio()is similar toi2d_X509()except it writes the encoding of the structurex to BIO bp and
it returns 1 for success and 0 for failure.

i2d_X509_fp()is similar toi2d_X509()except it writes the encoding of the structurex to BIO bp and it
returns 1 for success and 0 for failure.

NOTES
The lettersi andd in for examplei2d_X509 stand for ‘‘internal’’ (that is an internal C structure) and
‘‘ DER’’. So that i2d_X509converts from internal toDER.

The functions can also understandBER forms.

The actual X509 structure passed toi2d_X509()must be a valid populatedX509 structure it cannot
simply be fed with an empty structure such as that returned byX509_new().

The encoded data is in binary form and may contain embedded zeroes. Therefore anyFILE pointers or
BIOs should be opened in binary mode. Functions such asstrlen() will not return the correct length of
the encoded structure.

The ways that*in and*out are incremented after the operation can trap the unwary. See theWARN-
INGS section for some common errors.

The reason for the auto increment behaviour is to reflect a typical usage ofASN1 functions: after one
structure is encoded or decoded another will processed after it.

EXAMPLES
Allocate and encode theDER encoding of an X509 structure:

int len;
unsigned char *buf, *p;

len = i2d_X509(x, NULL);

0.9.7c 2002-11-14 171

d2i_X509(3) OpenSSL d2i_X509(3)

buf = OPENSSL_malloc(len);

if (buf == NULL)
/* error */

p = buf;

i2d_X509(x, &p);

If you are using OpenSSL 0.9.7 or later then this can be simplified to:

int len;
unsigned char *buf;

buf = NULL;

len = i2d_X509(x, &buf);

if (len < 0)
/* error */

Attempt to decode a buffer:

X509 *x;

unsigned char *buf, *p;

int len;

/* Something to setup buf and len */

p = buf;

x = d2i_X509(NULL, &p, len);

if (x == NULL)
/* Some error */

Alternative technique:

X509 *x;

unsigned char *buf, *p;

int len;

/* Something to setup buf and len */

p = buf;

x = NULL;

if(!d2i_X509(&x, &p, len))
/* Some error */

WARNINGS
The use of temporary variable is mandatory. A common mistake is to attempt to use a buffer directly as
follows:

int len;
unsigned char *buf;

len = i2d_X509(x, NULL);

buf = OPENSSL_malloc(len);

if (buf == NULL)
/* error */

i2d_X509(x, &buf);

/* Other stuff ... */

OPENSSL_free(buf);

This code will result inbuf apparently containing garbage because it was incremented after the call to
point after the data just written. Alsobuf will no longer contain the pointer allocated by
OPENSSL_malloc() and the subsequent call toOPENSSL_free() may well crash.

172 2002-11-14 0.9.7c

d2i_X509(3) OpenSSL d2i_X509(3)

The auto allocation feature (setting buf to NULL) only works on OpenSSL 0.9.7 and later. Attempts to
use it on earlier versions will typically cause a segmentation violation.

Another trap to avoid is misuse of thexp argument tod2i_X509():

X509 *x;

if (!d2i_X509(&x, &p, len))
/* Some error */

This will probably crash somewhere ind2i_X509(). The reason for this is that the variablex is unini-
tialized and an attempt will be made to interpret its (invalid) value as anX509 structure, typically caus-
ing a segmentation violation. Ifx is set toNULL first then this will not happen.

BUGS
In some versions of OpenSSL the ‘‘reuse’’ behaviour ofd2i_X509()when*px is valid is broken and
some parts of the reused structure may persist if they are not present in the new one. As a result the use
of this ‘‘reuse’’ behaviour is strongly discouraged.

i2d_X509()will not return an error in many versions of OpenSSL, if mandatory fields are not initialized
due to a programming error then the encoded structure may contain invalid data or omit the fields
entirely and will not be parsed byd2i_X509(). This may be fixed in future so code should not assume
that i2d_X509()will always succeed.

RETURN VALUES
d2i_X509(), d2i_X509_bio()and d2i_X509_fp()return a validX509 structure orNULL if an error
occurs. The error code that can be obtained byERR_get_error(3).

i2d_X509(), i2d_X509_bio()andi2d_X509_fp()return a the number of bytes successfully encoded or a
negative value if an error occurs. The error code can be obtained byERR_get_error(3).

i2d_X509_bio()andi2d_X509_fp()returns 1 for success and 0 if an error occurs The error code can be
obtained byERR_get_error(3).

SEE ALSO
ERR_get_error(3)

HISTORY
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio and i2d_X509_fp are available in
all versions of SSLeay and OpenSSL.

0.9.7c 2002-11-14 173

d2i_X509_ALGOR(3) OpenSSL d2i_X509_ALGOR(3)

NAME
d2i_X509_ALGOR, i2d_X509_ALGOR − AlgorithmIdentifier functions.

SYNOPSIS
#include <openssl/x509.h>

X509_ALGOR *d2i_X509_ALGOR(X509_ALGOR **a, unsigned char **pp, long length);
int i2d_X509_ALGOR(X509_ALGOR *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode anX509_ALGOR structure which is equivalent to theAlgorith-
mIdentifier structure.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3)
manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

174 2002-10-09 0.9.7c

d2i_X509_CRL(3) OpenSSL d2i_X509_CRL(3)

NAME
d2i_X509_CRL, i2d_X509_CRL, d2i_X509_CRL_bio, d2i_509_CRL_fp, i2d_X509_CRL_bio,
i2d_X509_CRL_fp − PKCS#10 certificate request functions.

SYNOPSIS
#include <openssl/x509.h>

X509_CRL *d2i_X509_CRL(X509_CRL **a, unsigned char **pp, long length);
int i2d_X509_CRL(X509_CRL *a, unsigned char **pp);

X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509_CRL **x);
X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **x);

int i2d_X509_CRL_bio(X509_CRL *x, BIO *bp);
int i2d_X509_CRL_fp(X509_CRL *x, FILE *fp);

DESCRIPTION
These functions decode and encode an X509CRL (certificate revocation list).

Othewise the functions behave in a similar way tod2i_X509() and i2d_X509() described in the
d2i_X509(3) manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.7c 2002-10-09 175

d2i_X509_NAME(3) OpenSSL d2i_X509_NAME(3)

NAME
d2i_X509_NAME, i2d_X509_NAME − X509_NAME encoding functions

SYNOPSIS
#include <openssl/x509.h>

X509_NAME *d2i_X509_NAME(X509_NAME **a, unsigned char **pp, long length);
int i2d_X509_NAME(X509_NAME *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode anX509_NAME structure which is the the same as theName type
defined inRFC2459(and elsewhere) and used for example in certificate subject and issuer names.

Othewise the functions behave in a similar way tod2i_X509() and i2d_X509() described in the
d2i_X509(3) manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

176 2002-10-09 0.9.7c

d2i_X509_REQ(3) OpenSSL d2i_X509_REQ(3)

NAME
d2i_X509_REQ, i2d_X509_REQ, d2i_X509_REQ_bio, d2i_X509_REQ_fp, i2d_X509_REQ_bio,
i2d_X509_REQ_fp − PKCS#10 certificate request functions.

SYNOPSIS
#include <openssl/x509.h>

X509_REQ *d2i_X509_REQ(X509_REQ **a, unsigned char **pp, long length);
int i2d_X509_REQ(X509_REQ *a, unsigned char **pp);

X509_REQ *d2i_X509_REQ_bio(BIO *bp, X509_REQ **x);
X509_REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **x);

int i2d_X509_REQ_bio(X509_REQ *x, BIO *bp);
int i2d_X509_REQ_fp(X509_REQ *x, FILE *fp);

DESCRIPTION
These functions decode and encode a PKCS#10 certificate request.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3)
manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

0.9.7c 2002-10-09 177

d2i_X509_SIG(3) OpenSSL d2i_X509_SIG(3)

NAME
d2i_X509_SIG, i2d_X509_SIG − DigestInfo functions.

SYNOPSIS
#include <openssl/x509.h>

X509_SIG *d2i_X509_SIG(X509_SIG **a, unsigned char **pp, long length);
int i2d_X509_SIG(X509_SIG *a, unsigned char **pp);

DESCRIPTION
These functions decode and encode an X509_SIG structure which is equivalent to theDigestInfo struc-
ture defined in PKCS#1 and PKCS#7.

Othewise these behave in a similar way tod2i_X509()and i2d_X509()described in thed2i_X509(3)
manual page.

SEE ALSO
d2i_X509(3)

HISTORY
TBA

178 2002-10-09 0.9.7c

des(3) OpenSSL des(3)

NAME
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, DES_set_key_unchecked,
DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt,
DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, DES_ede2_cfb64_encrypt,
DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, DES_ede3_cbcm_encrypt,
DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt, DES_cbc_cksum, DES_quad_cksum,
DES_string_to_key, DES_string_to_2keys, DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write −
DES encryption

SYNOPSIS
#include <openssl/des.h>

void DES_random_key(DES_cblock *ret);

int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_set_key_checked(const_DES_cblock *key,

DES_key_schedule *schedule);
void DES_set_key_unchecked(const_DES_cblock *key,

DES_key_schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);
int DES_is_weak_key(const_DES_cblock *key);

void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks, int enc);

void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);

void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, int enc);

void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec, int enc);

void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec);

void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int *num, int enc);

void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int *num);

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
const_DES_cblock *inw, const_DES_cblock *outw, int enc);

0.9.7c 2001-10-25 179

des(3) OpenSSL des(3)

void DES_ede2_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int enc);

void DES_ede2_cfb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);

void DES_ede2_ofb64_encrypt(const unsigned char *in,
unsigned char *out, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3_cbc_encrypt(const unsigned char *input,
unsigned char *output, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
int enc);

void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
int enc);

void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);

void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int *num);

DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
long length, DES_key_schedule *schedule,
const_DES_cblock *ivec);

DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
long length, int out_count, DES_cblock *seed);

void DES_string_to_key(const char *str, DES_cblock *key);
void DES_string_to_2keys(const char *str, DES_cblock *key1,

DES_cblock *key2);

char *DES_fcrypt(const char *buf, const char *salt, char *ret);
char *DES_crypt(const char *buf, const char *salt);

int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
DES_cblock *iv);

int DES_enc_write(int fd, const void *buf, int len,
DES_key_schedule *sched, DES_cblock *iv);

DESCRIPTION
This library contains a fast implementation of theDESencryption algorithm.

There are two phases to the use ofDES encryption. The first is the generation of aDES_key_schedule
from a key, the second is the actual encryption. ADESkey is of typeDES_cblock. This type is consists
of 8 bytes with odd parity. The least significant bit in each byte is the parity bit. The key schedule is
an expanded form of the key; it is used to speed the encryption process.

DES_random_key()generates a random key. ThePRNG must be seeded prior to using this function
(seerand(3)). If thePRNGcould not generate a secure key, 0 is returned.

Before aDES key can be used, it must be converted into the architecture dependentDES_key_schedule
via theDES_set_key_checked()or DES_set_key_unchecked()function.

DES_set_key_checked()will check that the key passed is of odd parity and is not a week or semi-weak
key. If the parity is wrong, then −1 is returned. If the key is a weak key, then −2 is returned. If an
error is returned, the key schedule is not generated.

DES_set_key()works like DES_set_key_checked()if the DES_check_keyflag is non−zero, otherwise
like DES_set_key_unchecked(). These functions are available for compatibility; it is recommended to
use a function that does not depend on a global variable.

180 2001-10-25 0.9.7c

des(3) OpenSSL des(3)

DES_set_odd_parity()sets the parity of the passedkeyto odd.

DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it is ok. The probability that a ran-
domly generated key is weak is 1/2ˆ52, so it is not really worth checking for them.

The following routines mostly operate on an input and output stream ofDES_cblocks.

DES_ecb_encrypt()is the basicDES encryption routine that encrypts or decrypts a single 8−byte
DES_cblockin electronic code book(ECB) mode. It always transforms the input data, pointed to by
input, into the output data, pointed to by theoutput argument. If theencryptargument is non-zero
(DES_ENCRYPT), theinput (cleartext) is encrypted in to theoutput(ciphertext) using the key_schedule
specified by the schedule argument, previously set viaDES_set_key. If encrypt is zero
(DES_DECRYPT), the input (now ciphertext) is decrypted into theoutput (now cleartext). Input and
output may overlap.DES_ecb_encrypt()does not return a value.

DES_ecb3_encrypt()encrypts/decrypts theinput block by using three-key Triple-DES encryption in
ECB mode. This involves encrypting the input withks1, decrypting with the key scheduleks2, and then
encrypting withks3. This routine greatly reduces the chances of brute force breaking ofDES and has
the advantage of ifks1, ks2andks3are the same, it is equivalent to just encryption usingECB mode
andks1as the key.

The macroDES_ecb2_encrypt()is provided to perform two-key Triple-DES encryption by usingks1
for the final encryption.

DES_ncbc_encrypt()encrypts/decrypts using thecipher-block-chaining(CBC) mode ofDES. If the
encryptargument is non−zero, the routine cipher-block-chain encrypts the cleartext data pointed to by
the input argument into the ciphertext pointed to by theoutputargument, using the key schedule pro-
vided by thescheduleargument, and initialization vector provided by theivecargument. If thelength
argument is not an integral multiple of eight bytes, the last block is copied to a temporary area and zero
filled. The output is always an integral multiple of eight bytes.

DES_xcbc_encrypt()is RSA’s DESX mode ofDES. It usesinw andoutw to ’whiten’ the encryption.
inw andoutware secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes.
This is much better thanCBC DES.

DES_ede3_cbc_encrypt()implements outer tripleCBC DES encryption with three keys. This means
that eachDES operation inside theCBC mode is really anC=E(ks3,D(ks2,E(ks1,M))) . This
mode is used bySSL.

The DES_ede2_cbc_encrypt()macro implements two-key Triple-DES by reusingks1 for the final
encryption. C=E(ks1,D(ks2,E(ks1,M))) . This form of Triple-DES is used by theRSAREF
library.

DES_pcbc_encrypt()encrypt/decrypts using the propagating cipher block chaining mode used by Ker-
beros v4. Its parameters are the same asDES_ncbc_encrypt().

DES_cfb_encrypt()encrypt/decrypts using cipher feedback mode. This method takes an array of char-
acters as input and outputs and array of characters. It does not require any padding to 8 character
groups. Note: theivec variable is changed and the new changed value needs to be passed to the next
call to this function. Since this function runs a completeDES ECBencryption pernumbits, this func-
tion is only suggested for use when sending small numbers of characters.

DES_cfb64_encrypt()implementsCFB mode ofDES with 64bit feedback. Why is this useful you ask?
Because this routine will allow you to encrypt an arbitrary number of bytes, no 8 byte padding. Each
call to this routine will encrypt the input bytes to output and then update ivec and num. num contains
’how far’ we are though ivec. If this does not make much sense, read more about cfb mode ofDES:−).

DES_ede3_cfb64_encrypt()and DES_ede2_cfb64_encrypt()is the same asDES_cfb64_encrypt()
except that Triple-DES is used.

DES_ofb_encrypt()encrypts using output feedback mode. This method takes an array of characters as
input and outputs and array of characters. It does not require any padding to 8 character groups. Note:
the ivecvariable is changed and the new changed value needs to be passed to the next call to this func-
tion. Since this function runs a completeDES ECBencryption per numbits, this function is only sug-
gested for use when sending small numbers of characters.

DES_ofb64_encrypt()is the same asDES_cfb64_encrypt()using Output Feed Back mode.

0.9.7c 2001-10-25 181

des(3) OpenSSL des(3)

DES_ede3_ofb64_encrypt()and DES_ede2_ofb64_encrypt()is the same asDES_ofb64_encrypt(),
using Triple−DES.

The following functions are included in theDES library for compatibility with theMIT Kerberos
library.

DES_cbc_cksum()produces an 8 byte checksum based on the input stream (viaCBC encryption). The
last 4 bytes of the checksum are returned and the complete 8 bytes are placed inoutput. This function is
used by Kerberos v4. Other applications should useEVP_DigestInit(3) etc. instead.

DES_quad_cksum()is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes. The
algorithm can be iterated over the input, depending onout_count, 1, 2, 3 or 4 times. Ifoutput is
non−NULL, the 8 bytes generated by each pass are written intooutput.

The following are DES-based transformations:

DES_fcrypt()is a fast version of the Unixcrypt(3) function. This version takes only a small amount of
space relative to other fastcrypt() implementations. This is different to the normal crypt in that the
third parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long.
This function is thread safe, unlike the normal crypt.

DES_crypt()is a faster replacement for the normal systemcrypt(). This function callsDES_fcrypt()
with a static array passed as the third parameter. This emulates the normal non-thread safe semantics
of crypt(3).

DES_enc_write()writes len bytes to file descriptorfd from buffer buf. The data is encrypted via
pcbc_encrypt(default) usingschedfor the key andiv as a starting vector. The actual data send downfd
consists of 4 bytes (in network byte order) containing the length of the following encrypted data. The
encrypted data then follows, padded with random data out to a multiple of 8 bytes.

DES_enc_read()is used to readlen bytes from file descriptorfd into buffer buf. The data being read
from fd is assumed to have come fromDES_enc_write()and is decrypted usingschedfor the key
schedule andiv for the initial vector.

Warning: The data format used byDES_enc_write()andDES_enc_read()has a cryptographic weak-
ness: When asked to write more thanMAXWRITE bytes,DES_enc_write()will split the data into sev-
eral chunks that are all encrypted using the sameIV. So don’t use these functions unless you are sure
you know what you do (in which case you might not want to use them anyway). They cannot handle
non-blocking sockets.DES_enc_read()uses an internal state and thus cannot be used on multiple files.

DES_rw_mode is used to specify the encryption mode to use withDES_enc_read()and
DES_end_write(). If set toDES_PCBC_MODE(the default), DES_pcbc_encrypt is used. If set to
DES_CBC_MODEDES_cbc_encrypt is used.

NOTES
Single-keyDES is insecure due to its short key size.ECB mode is not suitable for most applications;
seeDES_modes(7).

Theevp(3) library provides higher-level encryption functions.

BUGS
DES_3cbc_encrypt()is flawed and must not be used in applications.

DES_cbc_encrypt()does not modifyivec; useDES_ncbc_encrypt()instead.

DES_cfb_encrypt()andDES_ofb_encrypt()operates on input of 8 bits. What this means is that if you
set numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of
the second input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the
top 4 bits taken from the 4th input byte. The same holds for output. This function has been imple-
mented this way because most people will be using a multiple of 8 and because once you get into
pulling bytes input bytes apart things get ugly!

DES_string_to_key()is available for backward compatibility with theMIT library. New applications
should use a cryptographic hash function. The same applies forDES_string_to_2key().

CONFORMING TO
ANSI X3.106

Thedeslibrary was written to be source code compatible with theMIT Kerberos library.

182 2001-10-25 0.9.7c

des(3) OpenSSL des(3)

SEE ALSO
crypt(3), des_modes(7), evp(3), rand(3)

HISTORY
In OpenSSL 0.9.7, all des_ functions were renamed toDES_to avoid clashes with older versions of lib-
des. Compatibility des_ functions are provided for a short while, as well ascrypt(). Declarations for
these are in <openssl/des_old.h>. There is noDES_variant fordes_random_seed(). This will happen to
other functions as well if they are deemed redundant (des_random_seed()just callsRAND_seed()and
is present for backward compatibility only), buggy or already scheduled for removal.

des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), des_is_weak_key(), des_key_sched(),
des_pcbc_encrypt(), des_quad_cksum(), des_random_key()anddes_string_to_key()are available in the
MIT Kerberos library;des_check_key_parity(),des_fixup_key_parity()anddes_is_weak_key()are avail-
able in newer versions of that library.

des_set_key_checked()anddes_set_key_unchecked()were added in OpenSSL 0.9.5.

des_generate_random_block(), des_init_random_number_generator(), des_new_random_key(),
des_set_random_generator_seed()and des_set_sequence_number()and des_rand_data()are used in
newer versions of Kerberos but are not implemented here.

des_random_key()generated cryptographically weak random data in SSLeay and in OpenSSL prior
version 0.9.5, as well as in the originalMIT library.

AUTHOR
Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).

0.9.7c 2001-10-25 183

dh(3) OpenSSL dh(3)

NAME
dh − Diffie−Hellman key agreement

SYNOPSIS
#include <openssl/dh.h>
#include <openssl/engine.h>

DH * DH_new(void);
void DH_free(DH *dh);

int DH_size(const DH *dh);

DH * DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *), void *cb_arg);

int DH_check(const DH *dh, int *codes);

int DH_generate_key(DH *dh);
int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

void DH_set_default_method(const DH_METHOD *meth);
const DH_METHOD *DH_get_default_method(void);
int DH_set_method(DH *dh, const DH_METHOD *meth);
DH *DH_new_method(ENGINE *engine);
const DH_METHOD *DH_OpenSSL(void);

int DH_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int DH_set_ex_data(DH *d, int idx, char *arg);
char *DH_get_ex_data(DH *d, int idx);

DH * d2i_DHparams(DH **a, unsigned char **pp, long length);
int i2d_DHparams(const DH *a, unsigned char **pp);

int DHparams_print_fp(FILE *fp, const DH *x);
int DHparams_print(BIO *bp, const DH *x);

DESCRIPTION
These functions implement the Diffie-Hellman key agreement protocol. The generation of sharedDH
parameters is described inDH_generate_parameters(3); DH_generate_key(3) describes how to per-
form a key agreement.

TheDH structure consists of severalBIGNUM components.

struct
{
BIGNUM *p; // prime number (shared)
BIGNUM *g; // generator of Z_p (shared)
BIGNUM *priv_key; // private DH value x
BIGNUM *pub_key; // public DH value gˆx
// ...
};

DH

Note thatDH keys may use non-standardDH_METHOD implementations, either directly or by the use
of ENGINE modules. In some cases (eg. anENGINE providing support for hardware-embedded keys),
theseBIGNUM values will not be used by the implementation or may be used for alternative data stor-
age. For this reason, applications should generally avoid usingDH structure elements directly and
instead useAPI functions to query or modify keys.

SEE ALSO
dhparam(1), bn(3), dsa(3), err (3), rand(3), rsa(3), engine(3), DH_set_method(3), DH_new(3),
DH_get_ex_new_index(3), DH_generate_parameters(3), DH_compute_key(3), d2i_DHparams(3),
RSA_print(3)

184 2002-08-05 0.9.7c

DH_generate_key(3) OpenSSL DH_generate_key(3)

NAME
DH_generate_key, DH_compute_key − perform Diffie−Hellman key exchange

SYNOPSIS
#include <openssl/dh.h>

int DH_generate_key(DH *dh);

int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

DESCRIPTION
DH_generate_key()performs the first step of a Diffie-Hellman key exchange by generating private and
public DH values. By callingDH_compute_key(), these are combined with the other party’s public
value to compute the shared key.

DH_generate_key()expectsdh to contain the shared parametersdh−>p anddh−>g. It generates a ran-
dom privateDH value unlessdh−>priv_key is already set, and computes the corresponding public
valuedh−>pub_key, which can then be published.

DH_compute_key()computes the shared secret from the privateDH value indh and the other party’s
public value inpub_keyand stores it inkey. key must point toDH_size(dh)bytes of memory.

RETURN VALUES
DH_generate_key()returns 1 on success, 0 otherwise.

DH_compute_key()returns the size of the shared secret on success, −1 on error.

The error codes can be obtained byERR_get_error(3).

SEE ALSO
dh(3), ERR_get_error(3), rand(3), DH_size(3)

HISTORY
DH_generate_key()andDH_compute_key()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 185

DH_generate_parameters(3) OpenSSL DH_generate_parameters(3)

NAME
DH_generate_parameters, DH_check − generate and check Diffie−Hellman parameters

SYNOPSIS
#include <openssl/dh.h>

DH *DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *), void *cb_arg);

int DH_check(DH *dh, int *codes);

DESCRIPTION
DH_generate_parameters()generates Diffie-Hellman parameters that can be shared among a group of
users, and returns them in a newly allocatedDH structure. The pseudo-random number generator must
be seeded prior to callingDH_generate_parameters().

prime_len is the length in bits of the safe prime to be generated.generator is a small number > 1, typ-
ically 2 or 5.

A callback function may be used to provide feedback about the progress of the key generation. Ifcall-
back is notNULL , it will be called as described inBN_generate_prime(3) while a random prime num-
ber is generated, and when a prime has been found,callback(3, 0, cb_arg)is called.

DH_check()validates Diffie-Hellman parameters. It checks thatp is a safe prime, and thatg is a suit-
able generator. In the case of an error, the bit flagsDH_CHECK_P_NOT_SAFE_PRIMEor
DH_NOT_SUITABLE_GENERATORare set in*codes. DH_UNABLE_TO_CHECK_GENERATORis set if
the generator cannot be checked, i.e. it does not equal 2 or 5.

RETURN VALUES
DH_generate_parameters()returns a pointer to theDH structure, orNULL if the parameter generation
fails. The error codes can be obtained byERR_get_error(3).

DH_check()returns 1 if the check could be performed, 0 otherwise.

NOTES
DH_generate_parameters()may run for several hours before finding a suitable prime.

The parameters generated byDH_generate_parameters()are not to be used in signature schemes.

BUGS
If generator is not 2 or 5,dh−>g=generator is not a usable generator.

SEE ALSO
dh(3), ERR_get_error(3), rand(3), DH_free(3)

HISTORY
DH_check()is available in all versions of SSLeay and OpenSSL. Thecb_arg argument toDH_gener-
ate_parameters()was added in SSLeay 0.9.0.

In versions before OpenSSL 0.9.5,DH_CHECK_P_NOT_STRONG_PRIMEis used instead of
DH_CHECK_P_NOT_SAFE_PRIME.

186 2002-09-25 0.9.7c

DH_get_ex_new_index(3) OpenSSL DH_get_ex_new_index(3)

NAME
DH_get_ex_new_index, DH_set_ex_data, DH_get_ex_data − add application specific data to DH struc-
tures

SYNOPSIS
#include <openssl/dh.h>

int DH_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int DH_set_ex_data(DH *d, int idx, void *arg);

char *DH_get_ex_data(DH *d, int idx);

DESCRIPTION
These functions handle application specific data inDH structures. Their usage is identical to that of
RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() as described in
RSA_get_ex_new_index(3).

SEE ALSO
RSA_get_ex_new_index(3), dh(3)

HISTORY
DH_get_ex_new_index(), DH_set_ex_data()andDH_get_ex_data()are available since OpenSSL 0.9.5.

0.9.7c 2002-07-10 187

DH_new(3) OpenSSL DH_new(3)

NAME
DH_new, DH_free − allocate and free DH objects

SYNOPSIS
#include <openssl/dh.h>

DH* DH_new(void);

void DH_free(DH *dh);

DESCRIPTION
DH_new()allocates and initializes aDH structure.

DH_free() frees theDH structure and its components. The values are erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails,DH_new() returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

DH_free()returns no value.

SEE ALSO
dh(3), ERR_get_error(3), DH_generate_parameters(3), DH_generate_key(3)

HISTORY
DH_new()andDH_free()are available in all versions of SSLeay and OpenSSL.

188 2002-09-25 0.9.7c

DH_set_method(3) OpenSSL DH_set_method(3)

NAME
DH_set_default_method, DH_get_default_method, DH_set_method, DH_new_method, DH_OpenSSL
− select DH method

SYNOPSIS
#include <openssl/dh.h>
#include <openssl/engine.h>

void DH_set_default_method(const DH_METHOD *meth);

const DH_METHOD *DH_get_default_method(void);

int DH_set_method(DH *dh, const DH_METHOD *meth);

DH *DH_new_method(ENGINE *engine);

const DH_METHOD *DH_OpenSSL(void);

DESCRIPTION
A DH_METHOD specifies the functions that OpenSSL uses for Diffie-Hellman operations. By modify-
ing the method, alternative implementations such as hardware accelerators may be used.IMPORTANT:
See theNOTESsection for important information about how theseDH API functions are affected by the
use ofENGINE API calls.

Initially, the default DH_METHOD is the OpenSSL internal implementation, as returned by
DH_OpenSSL().

DH_set_default_method()makesmeth the default method for allDH structures created later.NB: This
is true only whilst noENGINE has been set as a default forDH, so this function is no longer recom-
mended.

DH_get_default_method()returns a pointer to the current defaultDH_METHOD. Howev er, the mean-
ingfulness of this result is dependant on whether theENGINE API is being used, so this function is no
longer recommended.

DH_set_method()selectsmeth to perform all operations using the keydh. This will replace the
DH_METHOD used by theDH key and if the previous method was supplied by anENGINE, the handle
to thatENGINE will be released during the change. It is possible to haveDH keys that only work with
certain DH_METHOD implementations (eg. from anENGINE module that supports embedded hard-
ware-protected keys), and in such cases attempting to change theDH_METHOD for the key can have
unexpected results.

DH_new_method()allocates and initializes aDH structure so thatenginewill be used for theDH opera-
tions. If engine is NULL, the defaultENGINE for DH operations is used, and if no defaultENGINE is
set, theDH_METHOD controlled byDH_set_default_method()is used.

THE DH_METHOD STRUCTURE
typedef struct dh_meth_st
{

/* name of the implementation */
const char *name;

/* generate private and public DH values for key agreement */
int (*generate_key)(DH *dh);

/* compute shared secret */
int (*compute_key)(unsigned char *key, BIGNUM *pub_key, DH *dh);

/* compute r = a ˆ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);

/* called at DH_new */
int (*init)(DH *dh);

0.9.7c 2002-10-29 189

DH_set_method(3) OpenSSL DH_set_method(3)

/* called at DH_free */
int (*finish)(DH *dh);

int flags;

char *app_data; /* ?? */

} DH_METHOD;

RETURN VALUES
DH_OpenSSL()andDH_get_default_method()return pointers to the respectiveDH_METHOD s.

DH_set_default_method()returns no value.

DH_set_method()returns non-zero if the providedmeth was successfully set as the method fordh
(including unloading theENGINE handle if the previous method was supplied by anENGINE).

DH_new_method()returnsNULL and sets an error code that can be obtained byERR_get_error(3) if
the allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7,DH_METHOD implementations are grouped together with other algorithmic APIs
(eg. RSA_METHOD, EVP_CIPHER, etc) inENGINE modules. If a defaultENGINE is specified forDH
functionality using anENGINE API function, that will override anyDH defaults set using theDH API
(ie. DH_set_default_method()). For this reason, theENGINE API is the recommended way to control
default implementations for use inDH and other cryptographic algorithms.

SEE ALSO
dh(3), DH_new(3)

HISTORY
DH_set_default_method(), DH_get_default_method(), DH_set_method(), DH_new_method() and
DH_OpenSSL()were added in OpenSSL 0.9.4.

DH_set_default_openssl_method() and DH_get_default_openssl_method() replaced
DH_set_default_method()and DH_get_default_method()respectively, andDH_set_method()and
DH_new_method()were altered to useENGINEs rather thanDH_METHOD s during development of the
engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in theENGINE API was restruc-
tured so that this change was reversed, and behaviour of the other functions resembled more closely the
previous behaviour. The behaviour of defaults in theENGINE API now transparently overrides the be-
haviour of defaults in theDH API without requiring changing these function prototypes.

190 2002-10-29 0.9.7c

DH_size(3) OpenSSL DH_size(3)

NAME
DH_size − get Diffie−Hellman prime size

SYNOPSIS
#include <openssl/dh.h>

int DH_size(DH *dh);

DESCRIPTION
This function returns the Diffie-Hellman size in bytes. It can be used to determine how much memory
must be allocated for the shared secret computed byDH_compute_key().

dh−>p must not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
dh(3), DH_generate_key(3)

HISTORY
DH_size()is available in all versions of SSLeay and OpenSSL.

0.9.7c 2000-02-24 191

dsa(3) OpenSSL dsa(3)

NAME
dsa − Digital Signature Algorithm

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/engine.h>

DSA * DSA_new(void);
void DSA_free(DSA *dsa);

int DSA_size(const DSA *dsa);

DSA * DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *), void *cb_arg);

DH * DSA_dup_DH(const DSA *r);

int DSA_generate_key(DSA *dsa);

int DSA_sign(int dummy, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);

int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
BIGNUM **rp);

int DSA_verify(int dummy, const unsigned char *dgst, int len,
const unsigned char *sigbuf, int siglen, DSA *dsa);

void DSA_set_default_method(const DSA_METHOD *meth);
const DSA_METHOD *DSA_get_default_method(void);
int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);
DSA *DSA_new_method(ENGINE *engine);
const DSA_METHOD *DSA_OpenSSL(void);

int DSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int DSA_set_ex_data(DSA *d, int idx, char *arg);
char *DSA_get_ex_data(DSA *d, int idx);

DSA_SIG *DSA_SIG_new(void);
void DSA_SIG_free(DSA_SIG *a);
int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);
DSA_SIG *d2i_DSA_SIG(DSA_SIG **v, unsigned char **pp, long length);

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
int DSA_do_verify(const unsigned char *dgst, int dgst_len,

DSA_SIG *sig, DSA *dsa);

DSA * d2i_DSAPublicKey(DSA **a, unsigned char **pp, long length);
DSA * d2i_DSAPrivateKey(DSA **a, unsigned char **pp, long length);
DSA * d2i_DSAparams(DSA **a, unsigned char **pp, long length);
int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);
int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);
int i2d_DSAparams(const DSA *a,unsigned char **pp);

int DSAparams_print(BIO *bp, const DSA *x);
int DSAparams_print_fp(FILE *fp, const DSA *x);
int DSA_print(BIO *bp, const DSA *x, int off);
int DSA_print_fp(FILE *bp, const DSA *x, int off);

DESCRIPTION
These functions implement the Digital Signature Algorithm (DSA). The generation of sharedDSA
parameters is described inDSA_generate_parameters(3); DSA_generate_key(3) describes how to gen-
erate a signature key. Signature generation and verification are described inDSA_sign(3).

TheDSA structure consists of severalBIGNUM components.

192 2002-08-05 0.9.7c

dsa(3) OpenSSL dsa(3)

struct
{
BIGNUM *p; // prime number (public)
BIGNUM *q; // 160-bit subprime, q p-1 (public)
BIGNUM *g; // generator of subgroup (public)
BIGNUM *priv_key; // private key x
BIGNUM *pub_key; // public key y = gˆx
// ...
}

DSA;

In public keys,priv_key is NULL.

Note thatDSA keys may use non-standardDSA_METHOD implementations, either directly or by the
use ofENGINE modules. In some cases (eg. anENGINE providing support for hardware-embedded
keys), theseBIGNUM values will not be used by the implementation or may be used for alternative data
storage. For this reason, applications should generally avoid usingDSA structure elements directly and
instead useAPI functions to query or modify keys.

CONFORMING TO
US Federal Information Processing StandardFIPS186 (Digital Signature Standard,DSS), ANSI X9.30

SEE ALSO
bn(3), dh(3), err (3), rand(3), rsa(3), sha(3), engine(3), DSA_new(3), DSA_size(3), DSA_gener-
ate_parameters(3), DSA_dup_DH(3), DSA_generate_key(3), DSA_sign(3), DSA_set_method(3),
DSA_get_ex_new_index(3), RSA_print(3)

0.9.7c 2002-08-05 193

DSA_do_sign(3) OpenSSL DSA_do_sign(3)

NAME
DSA_do_sign, DSA_do_verify − raw DSA signature operations

SYNOPSIS
#include <openssl/dsa.h>

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);

int DSA_do_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);

DESCRIPTION
DSA_do_sign()computes a digital signature on thelen byte message digestdgst using the private key
dsaand returns it in a newly allocatedDSA_SIG structure.

DSA_sign_setup(3) may be used to precompute part of the signing operation in case signature genera-
tion is time−critical.

DSA_do_verify()verifies that the signaturesig matches a given message digestdgst of sizelen. dsa is
the signer’s public key.

RETURN VALUES
DSA_do_sign()returns the signature,NULL on error. DSA_do_verify()returns 1 for a valid signature, 0
for an incorrect signature and −1 on error. The error codes can be obtained byERR_get_error(3).

SEE ALSO
dsa(3), ERR_get_error(3), rand(3), DSA_SIG_new(3), DSA_sign(3)

HISTORY
DSA_do_sign()andDSA_do_verify()were added in OpenSSL 0.9.3.

194 2002-09-25 0.9.7c

DSA_dup_DH(3) OpenSSL DSA_dup_DH(3)

NAME
DSA_dup_DH − create a DH structure out of DSA structure

SYNOPSIS
#include <openssl/dsa.h>

DH * DSA_dup_DH(const DSA *r);

DESCRIPTION
DSA_dup_DH()duplicatesDSA parameters/keys asDH parameters/keys. q is lost during that conver-
sion, but the resultingDH parameters contain its length.

RETURN VALUE
DSA_dup_DH()returns the newDH structure, andNULL on error. The error codes can be obtained by
ERR_get_error(3).

NOTE
Be careful to avoid small subgroup attacks when using this.

SEE ALSO
dh(3), dsa(3), ERR_get_error(3)

HISTORY
DSA_dup_DH()was added in OpenSSL 0.9.4.

0.9.7c 2002-09-25 195

DSA_generate_key(3) OpenSSL DSA_generate_key(3)

NAME
DSA_generate_key − generate DSA key pair

SYNOPSIS
#include <openssl/dsa.h>

int DSA_generate_key(DSA *a);

DESCRIPTION
DSA_generate_key()expectsa to containDSA parameters. It generates a new key pair and stores it in
a−>pub_keyanda−>priv_key.

ThePRNGmust be seeded prior to callingDSA_generate_key().

RETURN VALUE
DSA_generate_key()returns 1 on success, 0 otherwise. The error codes can be obtained by
ERR_get_error(3).

SEE ALSO
dsa(3), ERR_get_error(3), rand(3), DSA_generate_parameters(3)

HISTORY
DSA_generate_key()is available since SSLeay 0.8.

196 2002-09-25 0.9.7c

DSA_generate_parameters(3) OpenSSL DSA_generate_parameters(3)

NAME
DSA_generate_parameters − generate DSA parameters

SYNOPSIS
#include <openssl/dsa.h>

DSA *DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *), void *cb_arg);

DESCRIPTION
DSA_generate_parameters()generates primes p and q and a generator g for use in theDSA.

bits is the length of the prime to be generated; theDSSallows a maximum of 1024 bits.

If seedis NULL or seed_len< 20, the primes will be generated at random. Otherwise, the seed is used
to generate them. If the given seed does not yield a prime q, a new random seed is chosen and placed at
seed.

DSA_generate_parameters()places the iteration count in *counter_ret and a counter used for finding a
generator in *h_ret, unless these areNULL .

A callback function may be used to provide feedback about the progress of the key generation. Ifcall-
back is notNULL , it will be called as follows:

• When a candidate for q is generated,callback(0, m++, cb_arg)is called (m is 0 for the first can-
didate).

• When a candidate for q has passed a test by trial division,callback(1, −1, cb_arg)is called.
While a candidate for q is tested by Miller-Rabin primality tests,callback(1, i, cb_arg)is called
in the outer loop (once for each witness that confirms that the candidate may be prime); i is the
loop counter (starting at 0).

• When a prime q has been found,callback(2, 0, cb_arg)andcallback(3, 0, cb_arg)are called.

• Before a candidate for p (other than the first) is generated and tested,callback(0, counter,
cb_arg) is called.

• When a candidate for p has passed the test by trial division,callback(1, −1, cb_arg)is called.
While it is tested by the Miller-Rabin primality test,callback(1, i, cb_arg)is called in the outer
loop (once for each witness that confirms that the candidate may be prime). i is the loop counter
(starting at 0).

• When p has been found,callback(2, 1, cb_arg)is called.

• When the generator has been found,callback(3, 1, cb_arg)is called.

RETURN VALUE
DSA_generate_parameters()returns a pointer to theDSA structure, orNULL if the parameter genera-
tion fails. The error codes can be obtained byERR_get_error(3).

BUGS
Seed lengths > 20 are not supported.

SEE ALSO
dsa(3), ERR_get_error(3), rand(3), DSA_free(3)

HISTORY
DSA_generate_parameters()appeared in SSLeay 0.8. Thecb_arg argument was added in SSLeay
0.9.0. In versions up to OpenSSL 0.9.4,callback(1, ...)was called in the inner loop of the Miller-
Rabin test whenever it reached the squaring step (the parameters tocallback did not reveal how many
witnesses had been tested); since OpenSSL 0.9.5,callback(1, ...) is called as inBN_is_prime(3), i.e.
once for each witness. =cut

0.9.7c 2002-09-25 197

DSA_get_ex_new_index(3) OpenSSL DSA_get_ex_new_index(3)

NAME
DSA_get_ex_new_index, DSA_set_ex_data, DSA_get_ex_data − add application specific data to DSA
structures

SYNOPSIS
#include <openssl/DSA.h>

int DSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int DSA_set_ex_data(DSA *d, int idx, void *arg);

char *DSA_get_ex_data(DSA *d, int idx);

DESCRIPTION
These functions handle application specific data inDSA structures. Their usage is identical to that of
RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() as described in
RSA_get_ex_new_index(3).

SEE ALSO
RSA_get_ex_new_index(3), dsa(3)

HISTORY
DSA_get_ex_new_index(), DSA_set_ex_data()and DSA_get_ex_data()are available since OpenSSL
0.9.5.

198 2000-01-30 0.9.7c

DSA_new(3) OpenSSL DSA_new(3)

NAME
DSA_new, DSA_free − allocate and free DSA objects

SYNOPSIS
#include <openssl/dsa.h>

DSA* DSA_new(void);

void DSA_free(DSA *dsa);

DESCRIPTION
DSA_new() allocates and initializes a DSA structure. It is equivalent to calling
DSA_new_method(NULL).

DSA_free()frees theDSA structure and its components. The values are erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails,DSA_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

DSA_free()returns no value.

SEE ALSO
dsa(3), ERR_get_error(3), DSA_generate_parameters(3), DSA_generate_key(3)

HISTORY
DSA_new()andDSA_free()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 199

DSA_set_method(3) OpenSSL DSA_set_method(3)

NAME
DSA_set_default_method, DSA_get_default_method, DSA_set_method, DSA_new_method,
DSA_OpenSSL − select DSA method

SYNOPSIS
#include <openssl/dsa.h>
#include <openssl/engine.h>

void DSA_set_default_method(const DSA_METHOD *meth);

const DSA_METHOD *DSA_get_default_method(void);

int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);

DSA *DSA_new_method(ENGINE *engine);

DSA_METHOD *DSA_OpenSSL(void);

DESCRIPTION
A DSA_METHOD specifies the functions that OpenSSL uses forDSA operations. By modifying the
method, alternative implementations such as hardware accelerators may be used.IMPORTANT: See the
NOTESsection for important information about how theseDSA API functions are affected by the use of
ENGINE API calls.

Initially, the default DSA_METHOD is the OpenSSL internal implementation, as returned by
DSA_OpenSSL().

DSA_set_default_method()makesmeth the default method for allDSA structures created later.NB:
This is true only whilst noENGINE has been set as a default forDSA, so this function is no longer rec-
ommended.

DSA_get_default_method()returns a pointer to the current defaultDSA_METHOD. Howev er, the mean-
ingfulness of this result is dependant on whether theENGINE API is being used, so this function is no
longer recommended.

DSA_set_method()selectsmeth to perform all operations using the keyrsa. This will replace the
DSA_METHOD used by theDSA key and if the previous method was supplied by anENGINE, the han-
dle to thatENGINE will be released during the change. It is possible to haveDSA keys that only work
with certainDSA_METHOD implementations (eg. from anENGINE module that supports embedded
hardware-protected keys), and in such cases attempting to change theDSA_METHOD for the key can
have unexpected results.

DSA_new_method()allocates and initializes aDSA structure so thatenginewill be used for theDSA
operations. Ifengineis NULL, the default engine forDSA operations is used, and if no defaultENGINE
is set, theDSA_METHODcontrolled byDSA_set_default_method()is used.

THE DSA_METHOD STRUCTURE
struct
{

/* name of the implementation */
const char *name;

/* sign */
DSA_SIG *(*dsa_do_sign)(const unsigned char *dgst, int dlen,

DSA *dsa);

/* pre-compute kˆ-1 and r */
int (*dsa_sign_setup)(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,

BIGNUM **rp);

/* verify */
int (*dsa_do_verify)(const unsigned char *dgst, int dgst_len,

DSA_SIG *sig, DSA *dsa);

200 2002-10-29 0.9.7c

DSA_set_method(3) OpenSSL DSA_set_method(3)

/* compute rr = a1ˆp1 * a2ˆp2 mod m (May be NULL for some
implementations) */

int (*dsa_mod_exp)(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1,
BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *in_mont);

/* compute r = a ˆ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(DSA *dsa, BIGNUM *r, BIGNUM *a,

const BIGNUM *p, const BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at DSA_new */
int (*init)(DSA *DSA);

/* called at DSA_free */
int (*finish)(DSA *DSA);

int flags;

char *app_data; /* ?? */

} DSA_METHOD;

RETURN VALUES
DSA_OpenSSL()andDSA_get_default_method()return pointers to the respectiveDSA_METHODs.

DSA_set_default_method()returns no value.

DSA_set_method()returns non-zero if the providedmeth was successfully set as the method fordsa
(including unloading theENGINE handle if the previous method was supplied by anENGINE).

DSA_new_method()returnsNULL and sets an error code that can be obtained byERR_get_error(3) if
the allocation fails. Otherwise it returns a pointer to the newly allocated structure.

NOTES
As of version 0.9.7,DSA_METHOD implementations are grouped together with other algorithmic APIs
(eg.RSA_METHOD, EVP_CIPHER, etc) inENGINE modules. If a defaultENGINE is specified forDSA
functionality using anENGINE API function, that will override anyDSA defaults set using theDSA API
(ie. DSA_set_default_method()). For this reason, theENGINE API is the recommended way to control
default implementations for use inDSA and other cryptographic algorithms.

SEE ALSO
dsa(3), DSA_new(3)

HISTORY
DSA_set_default_method(), DSA_get_default_method(), DSA_set_method(), DSA_new_method()and
DSA_OpenSSL()were added in OpenSSL 0.9.4.

DSA_set_default_openssl_method() and DSA_get_default_openssl_method() replaced
DSA_set_default_method()and DSA_get_default_method()respectively, andDSA_set_method()and
DSA_new_method()were altered to useENGINEs rather thanDSA_METHODs during development of
the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in theENGINE API was
restructured so that this change was reversed, and behaviour of the other functions resembled more
closely the previous behaviour. The behaviour of defaults in theENGINE API now transparently over-
rides the behaviour of defaults in theDSA API without requiring changing these function prototypes.

0.9.7c 2002-10-29 201

DSA_SIG_new(3) OpenSSL DSA_SIG_new(3)

NAME
DSA_SIG_new, DSA_SIG_free − allocate and free DSA signature objects

SYNOPSIS
#include <openssl/dsa.h>

DSA_SIG *DSA_SIG_new(void);

void DSA_SIG_free(DSA_SIG *a);

DESCRIPTION
DSA_SIG_new()allocates and initializes aDSA_SIG structure.

DSA_SIG_free()frees theDSA_SIG structure and its components. The values are erased before the
memory is returned to the system.

RETURN VALUES
If the allocation fails,DSA_SIG_new()returnsNULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

DSA_SIG_free()returns no value.

SEE ALSO
dsa(3), ERR_get_error(3), DSA_do_sign(3)

HISTORY
DSA_SIG_new()andDSA_SIG_free()were added in OpenSSL 0.9.3.

202 2002-09-25 0.9.7c

DSA_sign(3) OpenSSL DSA_sign(3)

NAME
DSA_sign, DSA_sign_setup, DSA_verify − DSA signatures

SYNOPSIS
#include <openssl/dsa.h>

int DSA_sign(int type, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);

int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
BIGNUM **rp);

int DSA_verify(int type, const unsigned char *dgst, int len,
unsigned char *sigbuf, int siglen, DSA *dsa);

DESCRIPTION
DSA_sign()computes a digital signature on thelen byte message digestdgst using the private keydsa
and places itsASN.1 DER encoding atsigret. The length of the signature is places in *siglen. sigret
must point to DSA_size(dsa) bytes of memory.

DSA_sign_setup()may be used to precompute part of the signing operation in case signature generation
is time−critical. It expectsdsa to containDSA parameters. It places the precomputed values in newly
allocatedBIGNUM s at *kinvp and *rp , after freeing the old ones unless *kinvp and *rp are NULL.
These values may be passed toDSA_sign()in dsa−>kinv anddsa−>r. ctx is a pre-allocatedBN_CTX
or NULL.

DSA_verify()verifies that the signaturesigbuf of sizesiglen matches a given message digestdgst of
sizelen. dsa is the signer’s public key.

Thetype parameter is ignored.

ThePRNGmust be seeded beforeDSA_sign()(or DSA_sign_setup()) is called.

RETURN VALUES
DSA_sign()andDSA_sign_setup()return 1 on success, 0 on error.DSA_verify()returns 1 for a valid
signature, 0 for an incorrect signature and −1 on error. The error codes can be obtained by
ERR_get_error(3).

CONFORMING TO
US Federal Information Processing StandardFIPS186 (Digital Signature Standard,DSS), ANSI X9.30

SEE ALSO
dsa(3), ERR_get_error(3), rand(3), DSA_do_sign(3)

HISTORY
DSA_sign()andDSA_verify()are available in all versions of SSLeay.DSA_sign_setup()was added in
SSLeay 0.8.

0.9.7c 2002-09-25 203

DSA_size(3) OpenSSL DSA_size(3)

NAME
DSA_size − get DSA signature size

SYNOPSIS
#include <openssl/dsa.h>

int DSA_size(const DSA *dsa);

DESCRIPTION
This function returns the size of anASN.1 encodedDSA signature in bytes. It can be used to determine
how much memory must be allocated for aDSA signature.

dsa−>qmust not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
dsa(3), DSA_sign(3)

HISTORY
DSA_size()is available in all versions of SSLeay and OpenSSL.

204 2002-08-05 0.9.7c

engine(3) OpenSSL engine(3)

NAME
engine − ENGINE cryptographic module support

SYNOPSIS
#include <openssl/engine.h>

ENGINE *ENGINE_get_first(void);
ENGINE *ENGINE_get_last(void);
ENGINE *ENGINE_get_next(ENGINE *e);
ENGINE *ENGINE_get_prev(ENGINE *e);

int ENGINE_add(ENGINE *e);
int ENGINE_remove(ENGINE *e);

ENGINE *ENGINE_by_id(const char *id);

int ENGINE_init(ENGINE *e);
int ENGINE_finish(ENGINE *e);

void ENGINE_load_openssl(void);
void ENGINE_load_dynamic(void);
void ENGINE_load_cswift(void);
void ENGINE_load_chil(void);
void ENGINE_load_atalla(void);
void ENGINE_load_nuron(void);
void ENGINE_load_ubsec(void);
void ENGINE_load_aep(void);
void ENGINE_load_sureware(void);
void ENGINE_load_4758cca(void);
void ENGINE_load_openbsd_dev_crypto(void);
void ENGINE_load_builtin_engines(void);

void ENGINE_cleanup(void);

ENGINE *ENGINE_get_default_RSA(void);
ENGINE *ENGINE_get_default_DSA(void);
ENGINE *ENGINE_get_default_DH(void);
ENGINE *ENGINE_get_default_RAND(void);
ENGINE *ENGINE_get_cipher_engine(int nid);
ENGINE *ENGINE_get_digest_engine(int nid);

int ENGINE_set_default_RSA(ENGINE *e);
int ENGINE_set_default_DSA(ENGINE *e);
int ENGINE_set_default_DH(ENGINE *e);
int ENGINE_set_default_RAND(ENGINE *e);
int ENGINE_set_default_ciphers(ENGINE *e);
int ENGINE_set_default_digests(ENGINE *e);
int ENGINE_set_default_string(ENGINE *e, const char *list);

int ENGINE_set_default(ENGINE *e, unsigned int flags);

unsigned int ENGINE_get_table_flags(void);
void ENGINE_set_table_flags(unsigned int flags);

0.9.7c 2002-12-15 205

engine(3) OpenSSL engine(3)

int ENGINE_register_RSA(ENGINE *e);
void ENGINE_unregister_RSA(ENGINE *e);
void ENGINE_register_all_RSA(void);
int ENGINE_register_DSA(ENGINE *e);
void ENGINE_unregister_DSA(ENGINE *e);
void ENGINE_register_all_DSA(void);
int ENGINE_register_DH(ENGINE *e);
void ENGINE_unregister_DH(ENGINE *e);
void ENGINE_register_all_DH(void);
int ENGINE_register_RAND(ENGINE *e);
void ENGINE_unregister_RAND(ENGINE *e);
void ENGINE_register_all_RAND(void);
int ENGINE_register_ciphers(ENGINE *e);
void ENGINE_unregister_ciphers(ENGINE *e);
void ENGINE_register_all_ciphers(void);
int ENGINE_register_digests(ENGINE *e);
void ENGINE_unregister_digests(ENGINE *e);
void ENGINE_register_all_digests(void);
int ENGINE_register_complete(ENGINE *e);
int ENGINE_register_all_complete(void);

int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,

long i, void *p, void (*f)(), int cmd_optional);
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,

int cmd_optional);

int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
void *ENGINE_get_ex_data(const ENGINE *e, int idx);

int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);

ENGINE *ENGINE_new(void);
int ENGINE_free(ENGINE *e);

int ENGINE_set_id(ENGINE *e, const char *id);
int ENGINE_set_name(ENGINE *e, const char *name);
int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
int ENGINE_set_flags(ENGINE *e, int flags);
int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);

206 2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

const char *ENGINE_get_id(const ENGINE *e);
const char *ENGINE_get_name(const ENGINE *e);
const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
int ENGINE_get_flags(const ENGINE *e);
const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);

EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
UI_METHOD *ui_method, void *callback_data);

EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
UI_METHOD *ui_method, void *callback_data);

void ENGINE_add_conf_module(void);

DESCRIPTION
These functions create, manipulate, and use cryptographic modules in the form ofENGINE objects.
These objects act as containers for implementations of cryptographic algorithms, and support a refer-
ence-counted mechanism to allow them to be dynamically loaded in and out of the running application.

The cryptographic functionality that can be provided by anENGINE implementation includes the fol-
lowing abstractions;

RSA_METHOD - for providing alternative RSA implementations
DSA_METHOD, DH_METHOD, RAND_METHOD - alternative DSA, DH, and RAND
EVP_CIPHER - potentially multiple cipher algorithms (indexed by ’nid’)
EVP_DIGEST - potentially multiple hash algorithms (indexed by ’nid’)
key-loading - loading public and/or private EVP_PKEY keys

Reference counting and handles

Due to the modular nature of theENGINE API, pointers to ENGINEs need to be treated as handles − ie.
not only as pointers, but also as references to the underlyingENGINE object. Ie. you should obtain a
new reference when making copies of anENGINE pointer if the copies will be used (and released) inde-
pendantly.

ENGINE objects have two lev els of reference-counting to match the way in which the objects are used.
At the most basic level, eachENGINE pointer is inherently astructural reference − you need a struc-
tural reference simply to refer to the pointer value at all, as this kind of reference is your guarantee that
the structure can not be deallocated until you release your reference.

However, a structural reference provides no guarantee that theENGINE has been initiliased to be usable
to perform any of its cryptographic implementations − and indeed it’s quite possible that most
ENGINEs will not initialised at all on standard setups, as ENGINEs are typically used to support spe-
cialised hardware. To use anENGINE’s functionality, you need afunctional reference. This kind of ref-
erence can be considered a specialised form of structural reference, because each functional reference
implicitly contains a structural reference as well − however to avoid difficult-to-find programming
bugs, it is recommended to treat the two kinds of reference independantly. If you have a functional ref-
erence to anENGINE, you have a guarantee that theENGINE has been initialised ready to perform cryp-
tographic operations and will not be uninitialised or cleaned up until after you have released your refer-
ence.

We will discuss the two kinds of reference separately, including how to tell which one you are dealing

0.9.7c 2002-12-15 207

engine(3) OpenSSL engine(3)

with at any giv en point in time (after all they are both simply (ENGINE *) pointers, the difference is in
the way they are used).

Structural references

This basic type of reference is typically used for creating new ENGINEs dynamically, iterating across
OpenSSL’s internal linked-list of loaded ENGINEs, reading information about anENGINE, etc. Essen-
tially a structural reference is sufficient if you only need to query or manipulate the data of anENGINE
implementation rather than use its functionality.

The ENGINE_new()function returns a structural reference to a new (empty)ENGINE object. Other
than that, structural references come from return values to variousENGINE API functions such as;
ENGINE_by_id(), ENGINE_get_first(), ENGINE_get_last(), ENGINE_get_next(),
ENGINE_get_prev(). All structural references should be released by a corresponding to call to the
ENGINE_free()function − theENGINE object itself will only actually be cleaned up and deallocated
when the last structural reference is released.

It should also be noted that manyENGINE API function calls that accept a structural reference will
internally obtain another reference − typically this happens whenever the suppliedENGINE will be
needed by OpenSSL after the function has returned. Eg. the function to add a newENGINE to
OpenSSL’s internal list isENGINE_add()− if this function returns success, then OpenSSL will have
stored a new structural reference internally so the caller is still responsible for freeing their own refer-
ence withENGINE_free()when they are finished with it. In a similar way, some functions will auto-
matically release the structural reference passed to it if part of the function’s job is to do so. Eg. the
ENGINE_get_next()and ENGINE_get_prev()functions are used for iterating across the internal
ENGINE list − they will return a new structural reference to the next (or previous)ENGINE in the list or
NULL if at the end (or beginning) of the list, but in either case the structural reference passed to the
function is released on behalf of the caller.

To clarify a particular function’s handling of references, one should always consult that function’s doc-
umentation ‘‘man’’ page, or failing that the openssl/engine.h header file includes some hints.

Functional references

As mentioned, functional references exist when the cryptographic functionality of anENGINE is
required to be available. A functional reference can be obtained in one of two ways; from an existing
structural reference to the requiredENGINE, or by asking OpenSSL for the default operationalENGINE
for a given cryptographic purpose.

To obtain a functional reference from an existing structural reference, call theENGINE_init()function.
This returns zero if theENGINE was not already operational and couldn’t be successfully initialised (eg.
lack of system drivers, no special hardware attached, etc), otherwise it will return non-zero to indicate
that theENGINE is now operational and will have allocated a newfunctional reference to theENGINE.
In this case, the suppliedENGINE pointer is, from the point of the view of the caller, both a structural
reference and a functional reference − so if the caller intends to use it as a functional reference it should
free the structural reference withENGINE_free()first. If the caller wishes to use it only as a structural
reference (eg. if theENGINE_init()call was simply to test if theENGINE seems available/online), then
it should free the functional reference; all functional references are released by theENGINE_finish()
function.

The second way to get a functional reference is by asking OpenSSL for a default implementation for a
given task, eg. byENGINE_get_default_RSA(), ENGINE_get_default_cipher_engine(), etc. These are
discussed in the next section, though they are not usually required by application programmers as they
are used automatically when creating and using the relevant algorithm-specific types in OpenSSL, such
asRSA, DSA, EVP_CIPHER_CTX, etc.

Default implementations

For each supported abstraction, theENGINE code maintains an internal table of state to control which
implementations are available for a given abstraction and which should be used by default. These
implementations are registered in the tables separated-out by an ’nid’ index, because abstractions like
EVP_CIPHERandEVP_DIGESTsupport many distinct algorithms and modes − ENGINEs will support
different numbers and combinations of these. In the case of other abstractions likeRSA, DSA, etc, there
is only one ‘‘algorithm’’ so all implementations implicitly register using the same ’nid’ index.
ENGINEs can beregistered into these tables to make themselves available for use automatically by the

208 2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

various abstractions, eg.RSA. For illustrative purposes, we continue with theRSA example, though all
comments apply similarly to the other abstractions (they each get their own table and linkage to the cor-
responding section of openssl code).

When a newRSA key is being created, ie. inRSA_new_method(), a ‘‘get_default’’ call will be made to
theENGINE subsystem to process theRSA state table and return a functional reference to an initialised
ENGINE whoseRSA_METHOD should be used. If noENGINE should (or can) be used, it will return
NULL and theRSA key will operate with aNULL ENGINE handle by using the conventionalRSA imple-
mentation in OpenSSL (and will from then on behave the way it used to before theENGINE APIexisted
− for details seeRSA_new_method(3)).

Each state table has a flag to note whether it has processed this ‘‘get_default’’ query since the table was
last modified, because to process this question it must iterate across all the registered ENGINEs in the
table trying to initialise each of them in turn, in case one of them is operational. If it returns a func-
tional reference to anENGINE, it will also cache another reference to speed up processing future
queries (without needing to iterate across the table). Likewise, it will cache aNULL response if no
ENGINE was available so that future queries won’t repeat the same iteration unless the state table
changes. This behaviour can also be changed; if theENGINE_TABLE_FLAG_NOINIT flag is set (using
ENGINE_set_table_flags()), no attempted initialisations will take place, instead the only way for the
state table to return a non-NULLENGINE to the ‘‘get_default’’ query will be if one is expressly set in
the table. Eg.ENGINE_set_default_RSA()does the same job asENGINE_register_RSA()except that it
also sets the state table’s cached response for the ‘‘get_default’’ query.

In the case of abstractions likeEVP_CIPHER, where implementations are indexed by ’nid’, these flags
and cached-responses are distinct for each ’nid’ value.

It is worth illustrating the difference between ‘‘registration’’ of ENGINEs into these per-algorithm state
tables and using the alternative ‘‘set_default’’ functions. The latter handles both ‘‘registration’’ and also
setting the cached ‘‘default’’ENGINE in each relevant state table − so registered ENGINEs will only
have a chance to be initialised for use as a default if a defaultENGINE wasn’t already set for the same
state table. Eg. ifENGINE X supports cipher nids {A,B} andRSA, ENGINE Y supports ciphers {A}
andDSA, and the following code is executed;

ENGINE_register_complete(X);
ENGINE_set_default(Y, ENGINE_METHOD_ALL);
e1 = ENGINE_get_default_RSA();
e2 = ENGINE_get_cipher_engine(A);
e3 = ENGINE_get_cipher_engine(B);
e4 = ENGINE_get_default_DSA();
e5 = ENGINE_get_cipher_engine(C);

The results would be as follows;

assert(e1 == X);
assert(e2 == Y);
assert(e3 == X);
assert(e4 == Y);
assert(e5 == NULL);

Application requirements

This section will explain the basic things an application programmer should support to make the most
useful elements of theENGINE functionality available to the user. The first thing to consider is whether
the programmer wishes to make alternativeENGINE modules available to the application and user.
OpenSSL maintains an internal linked list of ‘‘visible’’ ENGINEs from which it has to operate − at
start−up, this list is empty and in fact if an application does not call anyENGINE API calls and it uses
static linking against openssl, then the resulting application binary will not contain any alternative
ENGINE code at all. So the first consideration is whether any/all availableENGINE implementations
should be made visible to OpenSSL − this is controlled by calling the various ‘‘load’’ functions, eg.

0.9.7c 2002-12-15 209

engine(3) OpenSSL engine(3)

/* Make the "dynamic" ENGINE available */
void ENGINE_load_dynamic(void);
/* Make the CryptoSwift hardware acceleration support available */
void ENGINE_load_cswift(void);
/* Make support for nCipher’s "CHIL" hardware available */
void ENGINE_load_chil(void);
...
/* Make ALL ENGINE implementations bundled with OpenSSL available */
void ENGINE_load_builtin_engines(void);

Having called any of these functions,ENGINE objects would have been dynamically allocated and pop-
ulated with these implementations and linked into OpenSSL’s internal linked list. At this point it is
important to mention an importantAPI function;

void ENGINE_cleanup(void);

If no ENGINE API functions are called at all in an application, then there are no inherent memory leaks
to worry about from theENGINE functionality, howev er if any ENGINEs are ‘‘load’’ed, even if they are
never registered or used, it is necessary to use theENGINE_cleanup()function to correspondingly
cleanup before program exit, if the caller wishes to avoid memory leaks. This mechanism uses an inter-
nal callback registration table so that anyENGINE API functionality that knows it requires cleanup can
register its cleanup details to be called duringENGINE_cleanup(). This approach allows
ENGINE_cleanup()to clean up after anyENGINE functionality at all that your program uses, yet
doesn’t automatically create linker dependencies to all possibleENGINE functionality − only the
cleanup callbacks required by the functionality you do use will be required by the linker.

The fact that ENGINEs are made visible to OpenSSL (and thus are linked into the program and loaded
into memory at run−time) does not mean they are ‘‘registered’’ or called into use by OpenSSL automat-
ically − that behaviour is something for the application to have control over. Some applications will
want to allow the user to specify exactly whichENGINE they want used if any is to be used at all. Oth-
ers may prefer to load all support and have OpenSSL automatically use at run-time anyENGINE that is
able to successfully initialise − ie. to assume that this corresponds to acceleration hardware attached to
the machine or some such thing. There are probably numerous other ways in which applications may
prefer to handle things, so we will simply illustrate the consequences as they apply to a couple of sim-
ple cases and leave dev elopers to consider these and the source code to openssl’s builtin utilities as
guides.

Using a specificENGINEimplementation

Here we’ll assume an application has been configured by its user or admin to want to use the ‘‘ACME’’
ENGINE if it is available in the version of OpenSSL the application was compiled with. If it is avail-
able, it should be used by default for allRSA, DSA, and symmetric cipher operation, otherwise
OpenSSL should use its builtin software as per usual. The following code illustrates how to approach
this;

210 2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

ENGINE *e;
const char *engine_id = "ACME";
ENGINE_load_builtin_engines();
e = ENGINE_by_id(engine_id);
if(!e)

/* the engine isn’t available */
return;

if(!ENGINE_init(e)) {
/* the engine couldn’t initialise, release ’e’ */
ENGINE_free(e);
return;

}
if(!ENGINE_set_default_RSA(e))

/* This should only happen when ’e’ can’t initialise, but the previous
* statement suggests it did. */

abort();
ENGINE_set_default_DSA(e);
ENGINE_set_default_ciphers(e);
/* Release the functional reference from ENGINE_init() */
ENGINE_finish(e);
/* Release the structural reference from ENGINE_by_id() */
ENGINE_free(e);

Automatically using builtinENGINEimplementations

Here we’ll assume we want to load and register allENGINE implementations bundled with OpenSSL,
such that for any cryptographic algorithm required by OpenSSL − if there is anENGINE that imple-
ments it and can be initialise, it should be used. The following code illustrates how this can work;

/* Load all bundled ENGINEs into memory and make them visible */
ENGINE_load_builtin_engines();
/* Register all of them for every algorithm they collectively implement */
ENGINE_register_all_complete();

That’s all that’s required. Eg. the next time OpenSSL tries to set up anRSA key, any bundled ENGINEs
that implementRSA_METHOD will be passed toENGINE_init() and if any of those succeed, that
ENGINE will be set as the default for use withRSA from then on.

Advanced configuration support

There is a mechanism supported by theENGINE framework that allows eachENGINE implementation
to define an arbitrary set of configuration ‘‘commands’’ and expose them to OpenSSL and any applica-
tions based on OpenSSL. This mechanism is entirely based on the use of name-value pairs and and
assumesASCII input (no unicode orUTF for now!), so it is ideal if applications want to provide a trans-
parent way for users to provide arbitrary configuration ‘‘directives’’ directly to such ENGINEs. It is
also possible for the application to dynamically interrogate the loadedENGINE implementations for the
names, descriptions, and input flags of their available ‘‘control commands’’, providing a more flexible
configuration scheme. However, if the user is expected to know whichENGINE device he/she is using
(in the case of specialised hardware, this goes without saying) then applications may not need to con-
cern themselves with discovering the supported control commands and simply prefer to allow settings
to passed into ENGINEs exactly as they are provided by the user.

Before illustrating how control commands work, it is worth mentioning what they are typically used
for. Broadly speaking there are two uses for control commands; the first is to provide the necessary
details to the implementation (which may know nothing at all specific to the host system) so that it can
be initialised for use. This could include the path to any driver or config files it needs to load, required
network addresses, smart-card identifiers, passwords to initialise password-protected devices, logging
information, etc etc. This class of commands typically needs to be passed to anENGINE before
attempting to initialise it, ie. before callingENGINE_init(). The other class of commands consist of set-
tings or operations that tweak certain behaviour or cause certain operations to take place, and these
commands may work either before or afterENGINE_init(), or in same cases both.ENGINE implemen-
tations should provide indications of this in the descriptions attached to builtin control commands

0.9.7c 2002-12-15 211

engine(3) OpenSSL engine(3)

and/or in external product documentation.

Issuing control commands to anENGINE

Let’s illustrate by example; a function for which the caller supplies the name of theENGINE it wishes
to use, a table of string-pairs for use before initialisation, and another table for use after initialisation.
Note that the string-pairs used for control commands consist of a command ‘‘name’’ followed by the
command ‘‘parameter’’ − the parameter could beNULL in some cases but the name can not. This func-
tion should initialise theENGINE (issuing the ‘‘pre’’ commands beforehand and the ‘‘post’’ commands
afterwards) and set it as the default for everything exceptRAND and then return a boolean success or
failure.

int generic_load_engine_fn(const char *engine_id,
const char **pre_cmds, int pre_num,
const char **post_cmds, int post_num)

{
ENGINE *e = ENGINE_by_id(engine_id);
if(!e) return 0;
while(pre_num--) {

if(!ENGINE_ctrl_cmd_string(e, pre_cmds[0], pre_cmds[1], 0)) {
fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

pre_cmds[0], pre_cmds[1] ? pre_cmds[1] : "(NULL)");
ENGINE_free(e);
return 0;

}
pre_cmds += 2;

}
if(!ENGINE_init(e)) {

fprintf(stderr, "Failed initialisation\n");
ENGINE_free(e);
return 0;

}
/* ENGINE_init() returned a functional reference, so free the structural

* reference from ENGINE_by_id(). */
ENGINE_free(e);
while(post_num--) {

if(!ENGINE_ctrl_cmd_string(e, post_cmds[0], post_cmds[1], 0)) {
fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

post_cmds[0], post_cmds[1] ? post_cmds[1] : "(NULL)");
ENGINE_finish(e);
return 0;

}
post_cmds += 2;

}
ENGINE_set_default(e, ENGINE_METHOD_ALL & ˜ENGINE_METHOD_RAND);
/* Success */
return 1;

}

Note thatENGINE_ctrl_cmd_string()accepts a boolean argument that can relax the semantics of the
function − if set non-zero it will only return failure if theENGINE supported the given command name
but failed while executing it, if theENGINE doesn’t support the command name it will simply return
success without doing anything. In this case we assume the user is only supplying commands specific
to the givenENGINE so we set this toFALSE.

Discovering supported control commands

It is possible to discover at run-time the names, numerical−ids, descriptions and input parameters of the
control commands supported from a structural reference to anyENGINE. It is first important to note that
some control commands are defined by OpenSSL itself and it will intercept and handle these control
commands on behalf of theENGINE, ie. theENGINE’s ctrl() handler is not used for the control com-
mand. openssl/engine.h defines a symbol,ENGINE_CMD_BASE, that all control commands

212 2002-12-15 0.9.7c

engine(3) OpenSSL engine(3)

implemented by ENGINEs from. Any command value lower than this symbol is considered a
‘‘generic’’ command is handled directly by the OpenSSL core routines.

It is using these ‘‘core’’ control commands that one can discover the the control commands imple-
mented by a givenENGINE, specifically the commands;

#define ENGINE_HAS_CTRL_FUNCTION 10
#define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
#define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
#define ENGINE_CTRL_GET_CMD_FROM_NAME 13
#define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
#define ENGINE_CTRL_GET_NAME_FROM_CMD 15
#define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
#define ENGINE_CTRL_GET_DESC_FROM_CMD 17
#define ENGINE_CTRL_GET_CMD_FLAGS 18

Whilst these commands are automatically processed by the OpenSSL framework code, they use various
properties exposed by eachENGINE by which to process these queries. AnENGINE has 3 properties it
exposes that can affect this behaviour; it can supply actrl() handler, it can specify
ENGINE_FLAGS_MANUAL_CMD_CTRLin the ENGINE’s flags, and it can expose an array of control
command descriptions. If anENGINE specifies theENGINE_FLAGS_MANUAL_CMD_CTRLflag, then
it will simply pass all these ‘‘core’’ control commands directly to theENGINE’s ctrl() handler (and thus,
it must have supplied one), so it is up to theENGINE to reply to these ‘‘discovery’’ commands itself. If
that flag is not set, then the OpenSSL framework code will work with the following rules;

if no ctrl() handler supplied;
ENGINE_HAS_CTRL_FUNCTION returns FALSE (zero),
all other commands fail.

if a ctrl() handler was supplied but no array of control commands;
ENGINE_HAS_CTRL_FUNCTION returns TRUE,
all other commands fail.

if a ctrl() handler and array of control commands was supplied;
ENGINE_HAS_CTRL_FUNCTION returns TRUE,
all other commands proceed processing ...

If the ENGINE’s array of control commands is empty then all other commands will fail, otherwise;
ENGINE_CTRL_GET_FIRST_CMD_TYPEreturns the identifier of the first command supported by the
ENGINE, ENGINE_GET_NEXT_CMD_TYPEtakes the identifier of a command supported by the
ENGINE and returns the next command identifier or fails if there are no more,
ENGINE_CMD_FROM_NAMEtakes a string name for a command and returns the corresponding identi-
fier or fails if no such command name exists, and the remaining commands take a command identifier
and return properties of the corresponding commands. All exceptENGINE_CTRL_GET_FLAGSreturn
the string length of a command name or description, or populate a supplied character buffer with a copy
of the command name or description.ENGINE_CTRL_GET_FLAGSreturns a bitwise−OR’d mask of the
following possible values;

#define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
#define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
#define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
#define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008

If the ENGINE_CMD_FLAG_INTERNALflag is set, then any other flags are purely informational to the
caller − this flag will prevent the command being usable for any higher-levelENGINE functions such as
ENGINE_ctrl_cmd_string(). ‘‘INTERNAL’’ commands are not intended to be exposed to text-based
configuration by applications, administrations, users, etc. These can support arbitrary operations via
ENGINE_ctrl(), including passing to and/or from the control commands data of any arbitrary type.
These commands are supported in the discovery mechanisms simply to allow applications determinie if
an ENGINE supports certain specific commands it might want to use (eg. application ‘‘foo’’ might
query various ENGINEs to see if they implement ‘‘FOO_GET_VENDOR_LOGO_GIF’’ − and ENGINE
could therefore decide whether or not to support this ‘‘foo’’−specific extension).

0.9.7c 2002-12-15 213

engine(3) OpenSSL engine(3)

Futur e dev elopments

The ENGINE API and internal architecture is currently being reviewed. Slated for possible release in
0.9.8 is support for transparent loading of ‘‘dynamic’’ ENGINEs (built as self-contained
shared−libraries). This would allowENGINE implementations to be provided independantly of
OpenSSL libraries and/or OpenSSL-based applications, and would also remove any requirement for
applications to explicitly use the ‘‘dynamic’’ENGINE to bind to shared-library implementations.

SEE ALSO
rsa(3), dsa(3), dh(3), rand(3), RSA_new_method(3)

214 2002-12-15 0.9.7c

err(3) OpenSSL err(3)

NAME
err − error codes

SYNOPSIS
#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_get_error_line_data(const char **file, int *line,

const char **data, int *flags);
unsigned long ERR_peek_error_line_data(const char **file, int *line,

const char **data, int *flags);

int ERR_GET_LIB(unsigned long e);
int ERR_GET_FUNC(unsigned long e);
int ERR_GET_REASON(unsigned long e);

void ERR_clear_error(void);

char *ERR_error_string(unsigned long e, char *buf);
const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

void ERR_load_crypto_strings(void);
void ERR_free_strings(void);

void ERR_remove_state(unsigned long pid);

void ERR_put_error(int lib, int func, int reason, const char *file,
int line);

void ERR_add_error_data(int num, ...);

void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
unsigned long ERR_PACK(int lib, int func, int reason);
int ERR_get_next_error_library(void);

DESCRIPTION
When a call to the OpenSSL library fails, this is usually signalled by the return value, and an error code
is stored in an error queue associated with the current thread. Theerr library provides functions to
obtain these error codes and textual error messages.

TheERR_get_error(3) manpage describes how to access error codes.

Error codes contain information about where the error occurred, and what went wrong.
ERR_GET_LIB(3) describes how to extract this information. A method to obtain human-readable error
messages is described inERR_error_string(3).

ERR_clear_error(3) can be used to clear the error queue.

Note thatERR_remove_state(3) should be used to avoid memory leaks when threads are terminated.

ADDING NEW ERROR CODES TO OPENSSL
SeeERR_put_error(3) if you want to record error codes in the OpenSSL error system from within your
application.

The remainder of this section is of interest only if you want to add new error codes to OpenSSL or add
error codes from external libraries.

0.9.7c 2002-07-10 215

err(3) OpenSSL err(3)

Reporting errors

Each sub-library has a specific macroXXXerr() that is used to report errors. Its first argument is a func-
tion codeXXX_F_..., the second argument is a reason codeXXX_R_.... Function codes are derived from
the function names; reason codes consist of textual error descriptions. For example, the function
ssl23_read()reports a ‘‘handshake failure’’ as follows:

SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);

Function and reason codes should consist of upper case characters, numbers and underscores only. The
error file generation script translates function codes into function names by looking in the header files
for an appropriate function name, if none is found it just uses the capitalized form such as
‘‘ SSL23_READ’’ in the above example.

The trailing section of a reason code (after the ‘‘_R_’’) is translated into lower case and underscores
changed to spaces.

When you are using new function or reason codes, runmake errors. The necessary#defines will then
automatically be added to the sub−library’s header file.

Although a library will normally report errors using its own specific XXXerr macro, another library’s
macro can be used. This is normally only done when a library wants to includeASN1 code which must
use theASN1err()macro.

Adding new libraries

When adding a new sub-library to OpenSSL, assign it a library numberERR_LIB_XXX , define a macro
XXXerr() (both in err.h), add its name toERR_str_libraries[] (in crypto/err/err.c), and add
ERR_load_XXX_strings() to theERR_load_crypto_strings()function (incrypto/err/err_all.c).
Finally, add an entry

L XXX xxx.h xxx_err.c

to crypto/err/openssl.ec, and addxxx_err.c to the Makefile. Runningmake errors will then generate
a filexxx_err.c, and add all error codes used in the library toxxx.h.

Additionally the library include file must have a certain form. Typically it will initially look like this:

#ifndef HEADER_XXX_H
#define HEADER_XXX_H

#ifdef __cplusplus
extern "C" {
#endif

/* Include files */

#include <openssl/bio.h>
#include <openssl/x509.h>

/* Macros, structures and function prototypes */

/* BEGIN ERROR CODES */

TheBEGIN ERROR CODES sequence is used by the error code generation script as the point to place
new error codes, any text after this point will be overwritten whenmake errors is run. The closing
#endif etc will be automatically added by the script.

The generated C error code filexxx_err.c will load the header filesstdio.h, openssl/err.h and
openssl/xxx.hso the header file must load any additional header files containing any definitions it uses.

USING ERROR CODES IN EXTERNAL LIBRARIES
It is also possible to use OpenSSL’s error code scheme in external libraries. The library needs to load its
own codes and call the OpenSSL error code insertion scriptmkerr.pl explicitly to add codes to the
header file and generate the C error code file. This will normally be done if the external library needs to
generate newASN1 structures but it can also be used to add more general purpose error code handling.

TBA more details

216 2002-07-10 0.9.7c

err(3) OpenSSL err(3)

INTERNALS
The error queues are stored in a hash table with oneERR_STATE entry for each pid.ERR_get_state()
returns the current thread’sERR_STATE. An ERR_STATE can hold up toERR_NUM_ERRORS error
codes. When more error codes are added, the old ones are overwritten, on the assumption that the most
recent errors are most important.

Error strings are also stored in hash table. The hash tables can be obtained by calling
ERR_get_err_state_table(void) and ERR_get_string_table(void) respectively.

SEE ALSO
CRYPTO_set_id_callback(3), CRYPTO_set_locking_callback(3), ERR_get_error(3),
ERR_GET_LIB(3), ERR_clear_error(3), ERR_error_string(3), ERR_print_errors(3),
ERR_load_crypto_strings(3), ERR_remove_state(3), ERR_put_error(3), ERR_load_strings(3),
SSL_get_error(3)

0.9.7c 2002-07-10 217

ERR_clear_error(3) OpenSSL ERR_clear_error(3)

NAME
ERR_clear_error − clear the error queue

SYNOPSIS
#include <openssl/err.h>

void ERR_clear_error(void);

DESCRIPTION
ERR_clear_error()empties the current thread’s error queue.

RETURN VALUES
ERR_clear_error()has no return value.

SEE ALSO
err (3), ERR_get_error(3)

HISTORY
ERR_clear_error()is available in all versions of SSLeay and OpenSSL.

218 2000-02-01 0.9.7c

ERR_error_string(3) OpenSSL ERR_error_string(3)

NAME
ERR_error_string, ERR_error_string_n, ERR_lib_error_string, ERR_func_error_string, ERR_rea-
son_error_string − obtain human−readable error message

SYNOPSIS
#include <openssl/err.h>

char *ERR_error_string(unsigned long e, char *buf);
char *ERR_error_string_n(unsigned long e, char *buf, size_t len);

const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

DESCRIPTION
ERR_error_string()generates a human-readable string representing the error codee, and places it at
buf. buf must be at least 120 bytes long. Ifbuf is NULL , the error string is placed in a static buffer.
ERR_error_string_n()is a variant ofERR_error_string()that writes at mostlen characters (including
the terminating 0) and truncates the string if necessary. ForERR_error_string_n(), buf may not be
NULL .

The string will have the following format:

error:[error code]:[library name]:[function name]:[reason string]

error codeis an 8 digit hexadecimal number,library name, function nameandreason stringareASCII
text.

ERR_lib_error_string(), ERR_func_error_string()and ERR_reason_error_string()return the library
name, function name and reason string respectively.

The OpenSSL error strings should be loaded by callingERR_load_crypto_strings(3) or, forSSLappli-
cations,SSL_load_error_strings(3) first. If there is no text string registered for the given error code,
the error string will contain the numeric code.

ERR_print_errors(3) can be used to print all error codes currently in the queue.

RETURN VALUES
ERR_error_string()returns a pointer to a static buffer containing the string ifbuf == NULL , buf other-
wise.

ERR_lib_error_string(), ERR_func_error_string()and ERR_reason_error_string()return the strings,
andNULL if none is registered for the error code.

SEE ALSO
err (3), ERR_get_error(3), ERR_load_crypto_strings(3), SSL_load_error_strings(3)
ERR_print_errors(3)

HISTORY
ERR_error_string()is available in all versions of SSLeay and OpenSSL.ERR_error_string_n()was
added in OpenSSL 0.9.6.

0.9.7c 2000-09-14 219

ERR_get_error(3) OpenSSL ERR_get_error(3)

NAME
ERR_get_error, ERR_peek_error, ERR_peek_last_error, ERR_get_error_line, ERR_peek_error_line,
ERR_peek_last_error_line, ERR_get_error_line_data, ERR_peek_error_line_data,
ERR_peek_last_error_line_data − obtain error code and data

SYNOPSIS
#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_peek_last_error(void);

unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_peek_last_error_line(const char **file, int *line);

unsigned long ERR_get_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags);

unsigned long ERR_peek_last_error_line_data(const char **file, int *line,
const char **data, int *flags);

DESCRIPTION
ERR_get_error()returns the earliest error code from the thread’s error queue and removes the entry.
This function can be called repeatedly until there are no more error codes to return.

ERR_peek_error()returns the earliest error code from the thread’s error queue without modifying it.

ERR_peek_last_error()returns the latest error code from the thread’s error queue without modifying it.

See ERR_GET_LIB(3) for obtaining information about location and reason of the error, and
ERR_error_string(3) for human-readable error messages.

ERR_get_error_line(), ERR_peek_error_line()and ERR_peek_last_error_line()are the same as the
above, but they additionally store the file name and line number where the error occurred in *file and
*line, unless these areNULL .

ERR_get_error_line_data(), ERR_peek_error_line_data()and ERR_get_last_error_line_data()store
additional data and flags associated with the error code in *data and *flags, unless these areNULL .
*data contains a string if *flags&ERR_TXT_STRING . If it has been allocated byOPENSSL_malloc(),
*flags&ERR_TXT_MALLOCED is true.

RETURN VALUES
The error code, or 0 if there is no error in the queue.

SEE ALSO
err (3), ERR_error_string(3), ERR_GET_LIB(3)

HISTORY
ERR_get_error(), ERR_peek_error(), ERR_get_error_line()and ERR_peek_error_line()are available
in all versions of SSLeay and OpenSSL.ERR_get_error_line_data()andERR_peek_error_line_data()
were added in SSLeay 0.9.0.ERR_peek_last_error(), ERR_peek_last_error_line() and
ERR_peek_last_error_line_data()were added in OpenSSL 0.9.7.

220 2002-11-29 0.9.7c

ERR_GET_LIB(3) OpenSSL ERR_GET_LIB(3)

NAME
ERR_GET_LIB, ERR_GET_FUNC, ERR_GET_REASON − get library, function and reason code

SYNOPSIS
#include <openssl/err.h>

int ERR_GET_LIB(unsigned long e);

int ERR_GET_FUNC(unsigned long e);

int ERR_GET_REASON(unsigned long e);

DESCRIPTION
The error code returned byERR_get_error()consists of a library number, function code and reason
code.ERR_GET_LIB(), ERR_GET_FUNC() andERR_GET_REASON() can be used to extract these.

The library number and function code describe where the error occurred, the reason code is the infor-
mation about what went wrong.

Each sub-library of OpenSSL has a unique library number; function and reason codes are unique within
each sub−library. Note that different libraries may use the same value to signal different functions and
reasons.

ERR_R_... reason codes such asERR_R_MALLOC_FAILURE are globally unique. However, when
checking for sub-library specific reason codes, be sure to also compare the library number.

ERR_GET_LIB(), ERR_GET_FUNC() andERR_GET_REASON() are macros.

RETURN VALUES
The library number, function code and reason code respectively.

SEE ALSO
err (3), ERR_get_error(3)

HISTORY
ERR_GET_LIB(), ERR_GET_FUNC() and ERR_GET_REASON() are available in all versions of SSLeay
and OpenSSL.

0.9.7c 2000-02-01 221

ERR_load_crypto_strings(3) OpenSSL ERR_load_crypto_strings(3)

NAME
ERR_load_crypto_strings, SSL_load_error_strings, ERR_free_strings − load and free error strings

SYNOPSIS
#include <openssl/err.h>

void ERR_load_crypto_strings(void);
void ERR_free_strings(void);

#include <openssl/ssl.h>

void SSL_load_error_strings(void);

DESCRIPTION
ERR_load_crypto_strings() registers the error strings for all libcrypto functions.
SSL_load_error_strings()does the same, but also registers thelibssl error strings.

One of these functions should be called before generating textual error messages. However, this is not
required when memory usage is an issue.

ERR_free_strings()frees all previously loaded error strings.

RETURN VALUES
ERR_load_crypto_strings(), SSL_load_error_strings()andERR_free_strings()return no values.

SEE ALSO
err (3), ERR_error_string(3)

HISTORY
ERR_load_error_strings(), SSL_load_error_strings()and ERR_free_strings()are available in all ver-
sions of SSLeay and OpenSSL.

222 2000-02-24 0.9.7c

ERR_load_strings(3) OpenSSL ERR_load_strings(3)

NAME
ERR_load_strings, ERR_PACK, ERR_get_next_error_library − load arbitrary error strings

SYNOPSIS
#include <openssl/err.h>

void ERR_load_strings(int lib, ERR_STRING_DATA str[]);

int ERR_get_next_error_library(void);

unsigned long ERR_PACK(int lib, int func, int reason);

DESCRIPTION
ERR_load_strings()registers error strings for library numberlib .

str is an array of error string data:

typedef struct ERR_string_data_st
{

unsigned long error;
char *string;

} ERR_STRING_DATA;

The error code is generated from the library number and a function and reason code:error =
ERR_PACK(lib, func, reason). ERR_PACK() is a macro.

The last entry in the array is {0,0}.

ERR_get_next_error_library()can be used to assign library numbers to user libraries at runtime.

RETURN VALUE
ERR_load_strings()returns no value.ERR_PACK() return the error code.ERR_get_next_error_library()
returns a new library number.

SEE ALSO
err (3), ERR_load_strings(3)

HISTORY
ERR_load_error_strings()and ERR_PACK() are available in all versions of SSLeay and OpenSSL.
ERR_get_next_error_library()was added in SSLeay 0.9.0.

0.9.7c 2000-02-24 223

ERR_print_errors(3) OpenSSL ERR_print_errors(3)

NAME
ERR_print_errors, ERR_print_errors_fp − print error messages

SYNOPSIS
#include <openssl/err.h>

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

DESCRIPTION
ERR_print_errors()is a convenience function that prints the error strings for all errors that OpenSSL
has recorded tobp, thus emptying the error queue.

ERR_print_errors_fp()is the same, except that the output goes to aFILE .

The error strings will have the following format:

[pid]:error:[error code]:[library name]:[function name]:[reason string]:[file name]:[line]:[optional text message]

error codeis an 8 digit hexadecimal number.library name, function nameandreason stringareASCII
text, as isoptional text messageif one was set for the respective error code.

If there is no text string registered for the given error code, the error string will contain the numeric
code.

RETURN VALUES
ERR_print_errors()andERR_print_errors_fp()return no values.

SEE ALSO
err (3), ERR_error_string(3), ERR_get_error(3), ERR_load_crypto_strings(3),
SSL_load_error_strings(3)

HISTORY
ERR_print_errors()andERR_print_errors_fp()are available in all versions of SSLeay and OpenSSL.

224 2000-02-01 0.9.7c

ERR_put_error(3) OpenSSL ERR_put_error(3)

NAME
ERR_put_error, ERR_add_error_data − record an error

SYNOPSIS
#include <openssl/err.h>

void ERR_put_error(int lib, int func, int reason, const char *file,
int line);

void ERR_add_error_data(int num, ...);

DESCRIPTION
ERR_put_error()adds an error code to the thread’s error queue. It signals that the error of reason code
reasonoccurred in functionfunc of library lib, in line numberline of file. This function is usually
called by a macro.

ERR_add_error_data()associates the concatenation of itsnum string arguments with the error code
added last.

ERR_load_strings(3) can be used to register error strings so that the application can a generate human-
readable error messages for the error code.

RETURN VALUES
ERR_put_error()andERR_add_error_data()return no values.

SEE ALSO
err (3), ERR_load_strings(3)

HISTORY
ERR_put_error()is available in all versions of SSLeay and OpenSSL.ERR_add_error_data()was
added in SSLeay 0.9.0.

0.9.7c 2000-02-24 225

ERR_remove_state(3) OpenSSL ERR_remove_state(3)

NAME
ERR_remove_state − free a thread’s error queue

SYNOPSIS
#include <openssl/err.h>

void ERR_remove_state(unsigned long pid);

DESCRIPTION
ERR_remove_state()frees the error queue associated with threadpid. If pid == 0, the current thread
will have its error queue removed.

Since error queue data structures are allocated automatically for new threads, they must be freed when
threads are terminated in order to avoid memory leaks.

RETURN VALUE
ERR_remove_state()returns no value.

SEE ALSO
err (3)

HISTORY
ERR_remove_state()is available in all versions of SSLeay and OpenSSL.

226 2000-05-19 0.9.7c

evp(3) OpenSSL evp(3)

NAME
evp − high−level cryptographic functions

SYNOPSIS
#include <openssl/evp.h>

DESCRIPTION
TheEVP library provides a high-level interface to cryptographic functions.

EVP_Seal...and EVP_Open... provide public key encryption and decryption to implement digital
‘‘envelopes’’.

TheEVP_Sign...andEVP_Verify ... functions implement digital signatures.

Symmetric encryption is available with theEVP_Encrypt... functions. TheEVP_Digest... functions
provide message digests.

Algorithms are loaded withOpenSSL_add_all_algorithms(3).

All the symmetric algorithms (ciphers) and digests can be replaced byENGINE modules providing
alternative implementations. IfENGINE implementations of ciphers or digests are registered as defaults,
then the variousEVP functions will automatically use those implementations automatically in prefer-
ence to built in software implementations. For more information, consult theengine(3) man page.

SEE ALSO
EVP_DigestInit(3), EVP_EncryptInit(3), EVP_OpenInit(3), EVP_SealInit(3), EVP_SignInit(3),
EVP_VerifyInit(3), OpenSSL_add_all_algorithms(3), engine(3)

0.9.7c 2002-08-05 227

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

NAME
EVP_MD_CTX_init, EVP_MD_CTX_create, EVP_DigestInit_ex, EVP_DigestUpdate, EVP_Digest-
Final_ex, EVP_MD_CTX_cleanup, EVP_MD_CTX_destroy, EVP_MAX_MD_SIZE,
EVP_MD_CTX_copy_ex EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey_type,
EVP_MD_size, EVP_MD_block_size, EVP_MD_CTX_md, EVP_MD_CTX_size,
EVP_MD_CTX_block_size, EVP_MD_CTX_type, EVP_md_null, EVP_md2, EVP_md5, EVP_sha,
EVP_sha1, EVP_dss, EVP_dss1, EVP_mdc2, EVP_ripemd160, EVP_get_digestbyname,
EVP_get_digestbynid, EVP_get_digestbyobj − EVP digest routines

SYNOPSIS
#include <openssl/evp.h>

void EVP_MD_CTX_init(EVP_MD_CTX *ctx);
EVP_MD_CTX *EVP_MD_CTX_create(void);

int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md,

unsigned int *s);

int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);

int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out,const EVP_MD_CTX *in);

int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md,

unsigned int *s);

int EVP_MD_CTX_copy(EVP_MD_CTX *out,EVP_MD_CTX *in);

#define EVP_MAX_MD_SIZE (16+20) /* The SSLv3 md5+sha1 type */

#define EVP_MD_type(e) ((e)->type)
#define EVP_MD_pkey_type(e) ((e)->pkey_type)
#define EVP_MD_size(e) ((e)->md_size)
#define EVP_MD_block_size(e) ((e)->block_size)

#define EVP_MD_CTX_md(e) (e)->digest)
#define EVP_MD_CTX_size(e) EVP_MD_size((e)->digest)
#define EVP_MD_CTX_block_size(e) EVP_MD_block_size((e)->digest)
#define EVP_MD_CTX_type(e) EVP_MD_type((e)->digest)

const EVP_MD *EVP_md_null(void);
const EVP_MD *EVP_md2(void);
const EVP_MD *EVP_md5(void);
const EVP_MD *EVP_sha(void);
const EVP_MD *EVP_sha1(void);
const EVP_MD *EVP_dss(void);
const EVP_MD *EVP_dss1(void);
const EVP_MD *EVP_mdc2(void);
const EVP_MD *EVP_ripemd160(void);

const EVP_MD *EVP_get_digestbyname(const char *name);
#define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a))
#define EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a))

DESCRIPTION
TheEVP digest routines are a high level interface to message digests.

EVP_MD_CTX_init()initializes digest contetctx.

EVP_MD_CTX_create()allocates, initializes and returns a digest contet.

EVP_DigestInit_ex()sets up digest contextctx to use a digesttype from ENGINE impl . ctx must be ini-
tialized before calling this function.type will typically be supplied by a functionsuch asEVP_sha1().
If impl is NULL then the default implementation of digesttype is used.

228 2002-07-18 0.9.7c

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

EVP_DigestUpdate()hashescnt bytes of data atd into the digest contextctx. This function can be
called several times on the samectx to hash additional data.

EVP_DigestFinal_ex()retrieves the digest value fromctx and places it inmd. If the s parameter is not
NULL then the number of bytes of data written (i.e. the length of the digest) will be written to the inte-
ger ats, at mostEVP_MAX_MD_SIZE bytes will be written. After callingEVP_DigestFinal_ex()no
additional calls toEVP_DigestUpdate()can be made, butEVP_DigestInit_ex()can be called to initial-
ize a new digest operation.

EVP_MD_CTX_cleanup()cleans up digest contextctx, it should be called after a digest context is no
longer needed.

EVP_MD_CTX_destroy()cleans up digest contextctx and frees up the space allocated to it, it should
be called only on a context created usingEVP_MD_CTX_create().

EVP_MD_CTX_copy_ex()can be used to copy the message digest state fromin to out. This is useful if
large amounts of data are to be hashed which only differ in the last few bytes.out must be initialized
before calling this function.

EVP_DigestInit()behaves in the same way asEVP_DigestInit_ex()except the passed contextctx does
not have to be initialized, and it always uses the default digest implementation.

EVP_DigestFinal()is similar toEVP_DigestFinal_ex()except the digest contetctx is automatically
cleaned up.

EVP_MD_CTX_copy()is similar toEVP_MD_CTX_copy_ex()except the destinationout does not have
to be initialized.

EVP_MD_size()and EVP_MD_CTX_size()return the size of the message digest when passed an
EVP_MD or anEVP_MD_CTX structure, i.e. the size of the hash.

EVP_MD_block_size()and EVP_MD_CTX_block_size()return the block size of the message digest
when passed anEVP_MD or anEVP_MD_CTX structure.

EVP_MD_type()and EVP_MD_CTX_type()return theNID of the OBJECT IDENTIFIERrepresenting
the given message digest when passed anEVP_MD structure. For example
EVP_MD_type(EVP_sha1()) returnsNID_sha1. This function is normally used when settingASN1
OIDs.

EVP_MD_CTX_md()returns theEVP_MD structure corresponding to the passedEVP_MD_CTX .

EVP_MD_pkey_type()returns theNID of the public key signing algorithm associated with this digest.
For exampleEVP_sha1()is associated withRSA so this will returnNID_sha1WithRSAEncryption.
This ‘‘link’’ between digests and signature algorithms may not be retained in future versions of
OpenSSL.

EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_mdc2() and EVP_ripemd160() return
EVP_MD structures for theMD2, MD5, SHA, SHA1, MDC2 andRIPEMD160digest algorithms respec-
tively. The associated signature algorithm isRSA in each case.

EVP_dss()andEVP_dss1()returnEVP_MD structures forSHA andSHA1 digest algorithms but using
DSS(DSA) for the signature algorithm.

EVP_md_null()is a ‘‘null’’ message digest that does nothing: i.e. the hash it returns is of zero length.

EVP_get_digestbyname(), EVP_get_digestbynid()and EVP_get_digestbyobj()return an EVP_MD
structure when passed a digest name, a digestNID or an ASN1_OBJECTstructure respectively. The
digest table must be initialized using, for example,OpenSSL_add_all_digests()for these functions to
work.

RETURN VALUES
EVP_DigestInit_ex(), EVP_DigestUpdate()and EVP_DigestFinal_ex()return 1 for success and 0 for
failure.

EVP_MD_CTX_copy_ex()returns 1 if successful or 0 for failure.

EVP_MD_type(), EVP_MD_pkey_type()and EVP_MD_type()return theNID of the corresponding
OBJECT IDENTIFIERor NID_undef if none exists.

EVP_MD_size(), EVP_MD_block_size(), EVP_MD_CTX_size(e), EVP_MD_size(),
EVP_MD_CTX_block_size() andEVP_MD_block_size()return the digest or block size in bytes.

0.9.7c 2002-07-18 229

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_dss(), EVP_dss1(),
EVP_mdc2()andEVP_ripemd160()return pointers to the correspondingEVP_MD structures.

EVP_get_digestbyname(), EVP_get_digestbynid()and EVP_get_digestbyobj()return either an
EVP_MD structure orNULL if an error occurs.

NOTES
TheEVP interface to message digests should almost always be used in preference to the low lev el inter-
faces. This is because the code then becomes transparent to the digest used and much more flexible.

SHA1 is the digest of choice for new applications. The other digest algorithms are still in common use.

For most applications theimpl parameter toEVP_DigestInit_ex()will be set toNULL to use the default
digest implementation.

The functionsEVP_DigestInit(), EVP_DigestFinal()and EVP_MD_CTX_copy()are obsolete but are
retained to maintain compatibility with existing code. New applications should useEVP_Diges-
tInit_ex(), EVP_DigestFinal_ex()and EVP_MD_CTX_copy_ex()because they can efficiently reuse a
digest context instead of initializing and cleaning it up on each call and allow non default implementa-
tions of digests to be specified.

In OpenSSL 0.9.7 and later if digest contexts are not cleaned up after use memory leaks will occur.

EXAMPLE
This example digests the data ‘‘Test Message\n’’ and ‘‘Hello World\n’’, using the digest name passed
on the command line.

#include <stdio.h>
#include <openssl/evp.h>

main(int argc, char *argv[])
{
EVP_MD_CTX mdctx;
const EVP_MD *md;
char mess1[] = "Test Message\n";
char mess2[] = "Hello World\n";
unsigned char md_value[EVP_MAX_MD_SIZE];
int md_len, i;

OpenSSL_add_all_digests();

if(!argv[1]) {
printf("Usage: mdtest digestname\n");
exit(1);

}

md = EVP_get_digestbyname(argv[1]);

if(!md) {
printf("Unknown message digest %s\n", argv[1]);
exit(1);

}

EVP_MD_CTX_init(&mdctx);
EVP_DigestInit_ex(&mdctx, md, NULL);
EVP_DigestUpdate(&mdctx, mess1, strlen(mess1));
EVP_DigestUpdate(&mdctx, mess2, strlen(mess2));
EVP_DigestFinal_ex(&mdctx, md_value, &md_len);
EVP_MD_CTX_cleanup(&mdctx);

printf("Digest is: ");
for(i = 0; i < md_len; i++) printf("%02x", md_value[i]);
printf("\n");
}

BUGS
The link between digests and signing algorithms results in a situation whereEVP_sha1()must be used
with RSA andEVP_dss1()must be used withDSSev en though they are identical digests.

230 2002-07-18 0.9.7c

EVP_DigestInit(3) OpenSSL EVP_DigestInit(3)

SEE ALSO
evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)

HISTORY
EVP_DigestInit(), EVP_DigestUpdate()andEVP_DigestFinal()are available in all versions of SSLeay
and OpenSSL.

EVP_MD_CTX_init(), EVP_MD_CTX_create(),EVP_MD_CTX_copy_ex(), EVP_MD_CTX_cleanup(),
EVP_MD_CTX_destroy(), EVP_DigestInit_ex()and EVP_DigestFinal_ex()were added in OpenSSL
0.9.7.

EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_dss(), EVP_dss1(),
EVP_mdc2()andEVP_ripemd160()were changed to return truely constEVP_MD * in OpenSSL 0.9.7.

0.9.7c 2002-07-18 231

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

NAME
EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex, EVP_CipherInit_ex,
EVP_CipherUpdate, EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length,
EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit, EVP_EncryptFinal,
EVP_DecryptInit, EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size,
EVP_CIPHER_key_length, EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode,
EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length, EVP_CIPHER_CTX_iv_length,
EVP_CIPHER_CTX_get_app_data, EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type,
EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1,
EVP_CIPHER_asn1_to_param, EVP_CIPHER_CTX_set_padding − EVP cipher routines

SYNOPSIS
#include <openssl/evp.h>

int EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);

int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv);

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv);

int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);

int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv, int enc);

int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
int *outl);

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);

232 2002-10-18 0.9.7c

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
#define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
#define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

#define EVP_CIPHER_nid(e) ((e)->nid)
#define EVP_CIPHER_block_size(e) ((e)->block_size)
#define EVP_CIPHER_key_length(e) ((e)->key_len)
#define EVP_CIPHER_iv_length(e) ((e)->iv_len)
#define EVP_CIPHER_flags(e) ((e)->flags)
#define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
int EVP_CIPHER_type(const EVP_CIPHER *ctx);

#define EVP_CIPHER_CTX_cipher(e) ((e)->cipher)
#define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid)
#define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size)
#define EVP_CIPHER_CTX_key_length(e) ((e)->key_len)
#define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len)
#define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
#define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
#define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
#define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags)
#define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)

int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

DESCRIPTION
TheEVP cipher routines are a high level interface to certain symmetric ciphers.

EVP_CIPHER_CTX_init()initializes cipher contexctx.

EVP_EncryptInit_ex()sets up cipher contextctx for encryption with ciphertype from ENGINE impl .
ctx must be initialized before calling this function.type is normally supplied by a function such as
EVP_des_cbc(). Ifimpl is NULL then the default implementation is used.key is the symmetric key to
use andiv is theIV to use (if necessary), the actual number of bytes used for the key andIV depends on
the cipher. It is possible to set all parameters toNULL excepttype in an initial call and supply the
remaining parameters in subsequent calls, all of which havetype set toNULL. This is done when the
default cipher parameters are not appropriate.

EVP_EncryptUpdate()encryptsinl bytes from the bufferin and writes the encrypted version toout.
This function can be called multiple times to encrypt successive blocks of data. The amount of data
written depends on the block alignment of the encrypted data: as a result the amount of data written
may be anything from zero bytes to (inl + cipher_block_size − 1) sooutl should contain sufficient
room. The actual number of bytes written is placed inoutl.

If padding is enabled (the default) thenEVP_EncryptFinal_ex()encrypts the ‘‘final’’ data, that is any
data that remains in a partial block. It uses standard block padding (akaPKCSpadding). The encrypted
final data is written toout which should have sufficient space for one cipher block. The number of
bytes written is placed inoutl. After this function is called the encryption operation is finished and no
further calls toEVP_EncryptUpdate()should be made.

If padding is disabled thenEVP_EncryptFinal_ex()will not encrypt any more data and it will return an
error if any data remains in a partial block: that is if the total data length is not a multiple of the block
size.

EVP_DecryptInit_ex(), EVP_DecryptUpdate()and EVP_DecryptFinal_ex()are the corresponding
decryption operations.EVP_DecryptFinal()will return an error code if padding is enabled and the final
block is not correctly formatted. The parameters and restrictions are identical to the encryption opera-
tions except that if padding is enabled the decrypted data bufferout passed toEVP_DecryptUpdate()
should have sufficient room for (inl + cipher_block_size) bytes unless the cipher block size is 1 in
which caseinl bytes is sufficient.

EVP_CipherInit_ex(), EVP_CipherUpdate()andEVP_CipherFinal_ex()are functions that can be used
for decryption or encryption. The operation performed depends on the value of theenc parameter. It
should be set to 1 for encryption, 0 for decryption and −1 to leave the value unchanged (the actual value

0.9.7c 2002-10-18 233

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

of ’enc’ being supplied in a previous call).

EVP_CIPHER_CTX_cleanup()clears all information from a cipher context and free up any allocated
memory associate with it. It should be called after all operations using a cipher are complete so sensi-
tive information does not remain in memory.

EVP_EncryptInit(), EVP_DecryptInit()andEVP_CipherInit()behave in a similar way toEVP_Encryp-
tInit_ex(), EVP_DecryptInit_ex andEVP_CipherInit_ex()except thectx paramter does not need to be
initialized and they always use the default cipher implementation.

EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() behave in a similar way to
EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex()and EVP_CipherFinal_ex()exceptctx is automati-
cally cleaned up after the call.

EVP_get_cipherbyname(), EVP_get_cipherbynid()andEVP_get_cipherbyobj()return anEVP_CIPHER
structure when passed a cipher name, aNID or anASN1_OBJECTstructure.

EVP_CIPHER_nid()and EVP_CIPHER_CTX_nid()return the NID of a cipher when passed an
EVP_CIPHER or EVP_CIPHER_CTX structure. The actualNID value is an internal value which may
not have a correspondingOBJECT IDENTIFIER.

EVP_CIPHER_CTX_set_padding()enables or disables padding. By default encryption operations are
padded using standard block padding and the padding is checked and removed when decrypting. If the
pad parameter is zero then no padding is performed, the total amount of data encrypted or decrypted
must then be a multiple of the block size or an error will occur.

EVP_CIPHER_key_length()and EVP_CIPHER_CTX_key_length()return the key length of a cipher
when passed an EVP_CIPHER or EVP_CIPHER_CTX structure. The constant
EVP_MAX_KEY_LENGTH is the maximum key length for all ciphers. Note: although
EVP_CIPHER_key_length()is fixed for a given cipher, the value ofEVP_CIPHER_CTX_key_length()
may be different for variable key length ciphers.

EVP_CIPHER_CTX_set_key_length()sets the key length of the cipher ctx. If the cipher is a fixed
length cipher then attempting to set the key length to any value other than the fixed value is an error.

EVP_CIPHER_iv_length()andEVP_CIPHER_CTX_iv_length()return theIV length of a cipher when
passed anEVP_CIPHER or EVP_CIPHER_CTX . It will return zero if the cipher does not use anIV.
The constantEVP_MAX_IV_LENGTH is the maximumIV length for all ciphers.

EVP_CIPHER_block_size()and EVP_CIPHER_CTX_block_size()return the block size of a cipher
when passed anEVP_CIPHER or EVP_CIPHER_CTX structure. The constantEVP_MAX_IV_LENGTH
is also the maximum block length for all ciphers.

EVP_CIPHER_type()andEVP_CIPHER_CTX_type()return the type of the passed cipher or context.
This ‘‘type’’ is the actualNID of the cipherOBJECT IDENTIFIERas such it ignores the cipher parame-
ters and 40 bitRC2 and 128 bitRC2 have the sameNID. If the cipher does not have an object identifier
or does not haveASN1 support this function will returnNID_undef.

EVP_CIPHER_CTX_cipher()returns theEVP_CIPHER structure when passed anEVP_CIPHER_CTX
structure.

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODEor EVP_CIPH_OFB_MODE. If
the cipher is a stream cipher thenEVP_CIPH_STREAM_CIPHERis returned.

EVP_CIPHER_param_to_asn1()sets the AlgorithmIdentifier ‘‘parameter’’ based on the passed cipher.
This will typically include any parameters and anIV. The cipherIV (if any) must be set when this call
is made. This call should be made before the cipher is actually ‘‘used’’ (before anyEVP_EncryptUp-
date(),EVP_DecryptUpdate()calls for example). This function may fail if the cipher does not have any
ASN1 support.

EVP_CIPHER_asn1_to_param()sets the cipher parameters based on anASN1 AlgorithmIdentifier
‘‘parameter’’. The precise effect depends on the cipher In the case ofRC2, for example, it will set theIV
and effective key length. This function should be called after the base cipher type is set but before the
key is set. For exampleEVP_CipherInit() will be called with the IV and key set toNULL,
EVP_CIPHER_asn1_to_param()will be called and finallyEVP_CipherInit()again with all parameters
except the key set toNULL. It is possible for this function to fail if the cipher does not have anyASN1
support or the parameters cannot be set (for example theRC2effective key length is not supported.

234 2002-10-18 0.9.7c

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

EVP_CIPHER_CTX_ctrl()allows various cipher specific parameters to be determined and set. Cur-
rently only theRC2effective key length and the number of rounds ofRC5can be set.

RETURN VALUES
EVP_CIPHER_CTX_init,EVP_EncryptInit_ex(),EVP_EncryptUpdate()and EVP_EncryptFinal_ex()
return 1 for success and 0 for failure.

EVP_DecryptInit_ex()andEVP_DecryptUpdate()return 1 for success and 0 for failure.EVP_Decrypt-
Final_ex()returns 0 if the decrypt failed or 1 for success.

EVP_CipherInit_ex()andEVP_CipherUpdate()return 1 for success and 0 for failure.EVP_CipherFi-
nal_ex() returns 0 for a decryption failure or 1 for success.

EVP_CIPHER_CTX_cleanup()returns 1 for success and 0 for failure.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an
EVP_CIPHER structure orNULL on error.

EVP_CIPHER_nid()andEVP_CIPHER_CTX_nid()return aNID.

EVP_CIPHER_block_size()andEVP_CIPHER_CTX_block_size()return the block size.

EVP_CIPHER_key_length()andEVP_CIPHER_CTX_key_length()return the key length.

EVP_CIPHER_CTX_set_padding()always returns 1.

EVP_CIPHER_iv_length()and EVP_CIPHER_CTX_iv_length()return theIV length or zero if the
cipher does not use anIV.

EVP_CIPHER_type()andEVP_CIPHER_CTX_type()return theNID of the cipher’sOBJECT IDENTI-
FIER or NID_undef if it has no definedOBJECT IDENTIFIER.

EVP_CIPHER_CTX_cipher()returns anEVP_CIPHER structure.

EVP_CIPHER_param_to_asn1()andEVP_CIPHER_asn1_to_param()return 1 for success or zero for
failure.

CIPHER LISTING
All algorithms have a fixed key length unless otherwise stated.

EVP_enc_null()
Null cipher: does nothing.

EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)
DESin CBC, ECB, CFB andOFB modes respectively.

EVP_des_ede_cbc(void),EVP_des_ede(), EVP_des_ede_ofb(void), EVP_des_ede_cfb(void)
Tw o key tripleDESin CBC, ECB, CFB andOFB modes respectively.

EVP_des_ede3_cbc(void),EVP_des_ede3(), EVP_des_ede3_ofb(void), EVP_des_ede3_cfb(void)
Three key tripleDESin CBC, ECB, CFB andOFB modes respectively.

EVP_desx_cbc(void)
DESX algorithm inCBC mode.

EVP_rc4(void)
RC4stream cipher. This is a variable key length cipher with default key length 128 bits.

EVP_rc4_40(void)
RC4 stream cipher with 40 bit key length. This is obsolete and new code should useEVP_rc4()
and theEVP_CIPHER_CTX_set_key_length()function.

EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void),
EVP_idea_cbc(void)

IDEA encryption algorithm inCBC, ECB, CFB andOFB modes respectively.

EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)
RC2 encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable key
length cipher with an additional parameter called ‘‘effective key bits’’ or ‘‘effective key length’’.
By default both are set to 128 bits.

0.9.7c 2002-10-18 235

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
RC2 algorithm inCBC mode with a default key length and effective key length of 40 and 64 bits.
These are obsolete and new code should useEVP_rc2_cbc(),
EVP_CIPHER_CTX_set_key_length()and EVP_CIPHER_CTX_ctrl()to set the key length and
effective key length.

EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);
Blowfish encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable
key length cipher.

EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void)
CAST encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable key
length cipher.

EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void),
EVP_rc5_32_12_16_ofb(void)

RC5 encryption algorithm inCBC, ECB, CFB andOFB modes respectively. This is a variable key
length cipher with an additional ‘‘number of rounds’’ parameter. By default the key length is set to
128 bits and 12 rounds.

NOTES
Where possible theEVP interface to symmetric ciphers should be used in preference to the low lev el
interfaces. This is because the code then becomes transparent to the cipher used and much more flexi-
ble.

PKCS padding works by addingn padding bytes of valuen to make the total length of the encrypted
data a multiple of the block size. Padding is always added so if the data is already a multiple of the
block sizen will equal the block size. For example if the block size is 8 and 11 bytes are to be
encrypted then 5 padding bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled, it is not a strong test that
the input data or key is correct. A random block has better than 1 in 256 chance of being of the correct
format and problems with the input data earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if the total amount of data
decrypted is a multiple of the block size.

The functionsEVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), EVP_CipherInit() and
EVP_CipherFinal()are obsolete but are retained for compatibility with existing code. New code should
use EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
EVP_CipherInit_ex()and EVP_CipherFinal_ex()because they can reuse an existing context without
allocating and freeing it up on each call.

BUGS
For RC5the number of rounds can currently only be set to 8, 12 or 16. This is a limitation of the current
RC5code rather than theEVP interface.

EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with default
key lengths. If custom ciphers exceed these values the results are unpredictable. This is because it has
become standard practice to define a generic key as a fixed unsigned char array containing
EVP_MAX_KEY_LENGTH bytes.

The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested for certain common
S/MIME ciphers (RC2, DES, triple DES) in CBC mode.

EXAMPLES
Get the number of rounds used inRC5:

int nrounds;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds);

Get theRC2effective key length:

int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits);

Set the number of rounds used inRC5:

236 2002-10-18 0.9.7c

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

int nrounds;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL);

Set the effective key length used inRC2:

int key_bits;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL);

Encrypt a string using blowfish:

int do_crypt(char *outfile)
{
unsigned char outbuf[1024];
int outlen, tmplen;
/* Bogus key and IV: we’d normally set these from

* another source.
*/

unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
unsigned char iv[] = {1,2,3,4,5,6,7,8};
char intext[] = "Some Crypto Text";
EVP_CIPHER_CTX ctx;
FILE *out;
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv);

if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
{
/* Error */
return 0;
}

/* Buffer passed to EVP_EncryptFinal() must be after data just
* encrypted to avoid overwriting it.
*/

if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
{
/* Error */
return 0;
}

outlen += tmplen;
EVP_CIPHER_CTX_cleanup(&ctx);
/* Need binary mode for fopen because encrypted data is

* binary data. Also cannot use strlen() on it because
* it wont be null terminated and may contain embedded
* nulls.
*/

out = fopen(outfile, "wb");
fwrite(outbuf, 1, outlen, out);
fclose(out);
return 1;
}

The ciphertext from the above example can be decrypted using theopensslutility with the command
line:

S<openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d>

General encryption, decryption function example usingFILE I/O andRC2with an 80 bit key:

0.9.7c 2002-10-18 237

EVP_EncryptInit(3) OpenSSL EVP_EncryptInit(3)

int do_crypt(FILE *in, FILE *out, int do_encrypt)
{
/* Allow enough space in output buffer for additional block */
inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
int inlen, outlen;
/* Bogus key and IV: we’d normally set these from

* another source.
*/

unsigned char key[] = "0123456789";
unsigned char iv[] = "12345678";
/* Don’t set key or IV because we will modify the parameters */
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt);
EVP_CIPHER_CTX_set_key_length(&ctx, 10);
/* We finished modifying parameters so now we can set key and IV */
EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);

for(;;)
{
inlen = fread(inbuf, 1, 1024, in);
if(inlen <= 0) break;
if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))

{
/* Error */
return 0;
}

fwrite(outbuf, 1, outlen, out);
}

if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
{
/* Error */
return 0;
}

fwrite(outbuf, 1, outlen, out);

EVP_CIPHER_CTX_cleanup(&ctx);
return 1;
}

SEE ALSO
evp(3)

HISTORY
EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(),
EVP_DecryptFinal_ex(), EVP_CipherInit_ex(), EVP_CipherFinal_ex() and
EVP_CIPHER_CTX_set_padding()appeared in OpenSSL 0.9.7.

238 2002-10-18 0.9.7c

EVP_OpenInit(3) OpenSSL EVP_OpenInit(3)

NAME
EVP_OpenInit, EVP_OpenUpdate, EVP_OpenFinal − EVP envelope decryption

SYNOPSIS
#include <openssl/evp.h>

int EVP_OpenInit(EVP_CIPHER_CTX *ctx,EVP_CIPHER *type,unsigned char *ek,
int ekl,unsigned char *iv,EVP_PKEY *priv);

int EVP_OpenUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

DESCRIPTION
TheEVP envelope routines are a high level interface to envelope decryption. They decrypt a public key
encrypted symmetric key and then decrypt data using it.

EVP_OpenInit() initializes a cipher contextctx for decryption with ciphertype. It decrypts the
encrypted symmetric key of lengthekl bytes passed in theek parameter using the private keypriv .
TheIV is supplied in theiv parameter.

EVP_OpenUpdate()andEVP_OpenFinal()have exactly the same properties as theEVP_DecryptUp-
date()andEVP_DecryptFinal()routines, as documented on theEVP_EncryptInit(3) manual page.

NOTES
It is possible to callEVP_OpenInit()twice in the same way asEVP_DecryptInit(). The first call should
havepriv set toNULL and (after setting any cipher parameters) it should be called again withtype set
to NULL.

If the cipher passed in thetype parameter is a variable length cipher then the key length will be set to
the value of the recovered key length. If the cipher is a fixed length cipher then the recovered key length
must match the fixed cipher length.

RETURN VALUES
EVP_OpenInit()returns 0 on error or a non zero integer (actually the recovered secret key size) if suc-
cessful.

EVP_OpenUpdate()returns 1 for success or 0 for failure.

EVP_OpenFinal()returns 0 if the decrypt failed or 1 for success.

SEE ALSO
evp(3), rand(3), EVP_EncryptInit(3), EVP_SealInit(3)

HISTORY

0.9.7c 2000-09-23 239

EVP_PKEY_new(3) OpenSSL EVP_PKEY_new(3)

NAME
EVP_PKEY_new, EVP_PKEY_free − private key allocation functions.

SYNOPSIS
#include <openssl/evp.h>

EVP_PKEY *EVP_PKEY_new(void);
void EVP_PKEY_free(EVP_PKEY *key);

DESCRIPTION
TheEVP_PKEY_new()function allocates an emptyEVP_PKEY structure which is used by OpenSSL to
store private keys.

EVP_PKEY_free()frees up the private keykey.

NOTES
The EVP_PKEY structure is used by various OpenSSL functions which require a general private key
without reference to any particular algorithm.

The structure returned byEVP_PKEY_new()is empty. To add a private key to this empty structure the
functions described inEVP_PKEY_set1_RSA(3) should be used.

RETURN VALUES
EVP_PKEY_new()returns either the newly allocatedEVP_PKEY structure ofNULL if an error
occurred.

EVP_PKEY_free()does not return a value.

SEE ALSO
EVP_PKEY_set1_RSA(3)

HISTORY
TBA

240 2002-10-09 0.9.7c

EVP_PKEY_set1_RSA(3) OpenSSL EVP_PKEY_set1_RSA(3)

NAME
EVP_PKEY_set1_RSA, EVP_PKEY_set1_DSA, EVP_PKEY_set1_DH, EVP_PKEY_set1_EC_KEY,
EVP_PKEY_get1_RSA, EVP_PKEY_get1_DSA, EVP_PKEY_get1_DH,
EVP_PKEY_get1_EC_KEY, EVP_PKEY_assign_RSA, EVP_PKEY_assign_DSA,
EVP_PKEY_assign_DH, EVP_PKEY_assign_EC_KEY, EVP_PKEY_type − EVP_PKEY assignment
functions.

SYNOPSIS
#include <openssl/evp.h>

int EVP_PKEY_set1_RSA(EVP_PKEY *pkey,RSA *key);
int EVP_PKEY_set1_DSA(EVP_PKEY *pkey,DSA *key);
int EVP_PKEY_set1_DH(EVP_PKEY *pkey,DH *key);
int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey);
DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey);
DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey);
EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);

int EVP_PKEY_assign_RSA(EVP_PKEY *pkey,RSA *key);
int EVP_PKEY_assign_DSA(EVP_PKEY *pkey,DSA *key);
int EVP_PKEY_assign_DH(EVP_PKEY *pkey,DH *key);
int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

int EVP_PKEY_type(int type);

DESCRIPTION
EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and
EVP_PKEY_set1_EC_KEY()set the key referenced bypkey to key.

EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and
EVP_PKEY_get1_EC_KEY()return the referenced key inpkey or NULL if the key is not of the correct
type.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and
EVP_PKEY_assign_EC_KEY()also set the referenced key tokey however these use the suppliedkey
internally and sokey will be freed when the parentpkey is freed.

EVP_PKEY_type()returns the type of key corresponding to the valuetype. The type of a key can be
obtained with EVP_PKEY_type(pkey−>type). The return value will beEVP_PKEY_RSA,
EVP_PKEY_DSA, EVP_PKEY_DHor EVP_PKEY_ECfor the corresponding key types or NID_undef if
the key type is unassigned.

NOTES
In accordance with the OpenSSL naming convention the key obtained from or assigned to thepkey
using the1 functions must be freed as well aspkey.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH()
EVP_PKEY_assign_EC_KEY()are implemented as macros.

RETURN VALUES
EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and
EVP_PKEY_set1_EC_KEY()return 1 for success or 0 for failure.

EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and
EVP_PKEY_get1_EC_KEY()return the referenced key orNULL if an error occurred.

EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and
EVP_PKEY_assign_EC_KEY()return 1 for success and 0 for failure.

SEE ALSO
EVP_PKEY_new(3)

HISTORY
TBA

0.9.7c 2002-10-09 241

EVP_SealInit(3) OpenSSL EVP_SealInit(3)

NAME
EVP_SealInit, EVP_SealUpdate, EVP_SealFinal − EVP envelope encryption

SYNOPSIS
#include <openssl/evp.h>

int EVP_SealInit(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type, unsigned char **ek,
int *ekl, unsigned char *iv,EVP_PKEY **pubk, int npubk);

int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, unsigned char *in, int inl);

int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl);

DESCRIPTION
The EVP envelope routines are a high level interface to envelope encryption. They generate a random
key andIV (if required) then ‘‘envelope’’ it by using public key encryption. Data can then be encrypted
using this key.

EVP_SealInit()initializes a cipher contextctx for encryption with ciphertype using a random secret
key and IV. type is normally supplied by a function such asEVP_des_cbc(). The secret key is
encrypted using one or more public keys, this allows the same encrypted data to be decrypted using any
of the corresponding private keys.ek is an array of buffers where the public key encrypted secret key
will be written, each buffer must contain enough room for the corresponding encrypted key: that is
ek[i] must have room forEVP_PKEY_size(pubk[i]) bytes. The actual size of each encrypted secret
key is written to the arrayekl. pubk is an array ofnpubk public keys.

The iv parameter is a buffer where the generatedIV is written to. It must contain enough room for the
corresponding cipher’sIV, as determined by (for example) EVP_CIPHER_iv_length(type).

If the cipher does not require anIV then theiv parameter is ignored and can beNULL .

EVP_SealUpdate()and EVP_SealFinal()have exactly the same properties as theEVP_EncryptUp-
date()andEVP_EncryptFinal()routines, as documented on theEVP_EncryptInit(3) manual page.

RETURN VALUES
EVP_SealInit()returns 0 on error ornpubk if successful.

EVP_SealUpdate()andEVP_SealFinal()return 1 for success and 0 for failure.

NOTES
Because a random secret key is generated the random number generator must be seeded before calling
EVP_SealInit().

The public key must beRSA because it is the only OpenSSL public key algorithm that supports key
transport.

Envelope encryption is the usual method of using public key encryption on large amounts of data, this
is because public key encryption is slow but symmetric encryption is fast. So symmetric encryption is
used for bulk encryption and the small random symmetric key used is transferred using public key
encryption.

It is possible to callEVP_SealInit()twice in the same way asEVP_EncryptInit(). The first call should
havenpubk set to 0 and (after setting any cipher parameters) it should be called again withtype set to
NULL.

SEE ALSO
evp(3), rand(3), EVP_EncryptInit(3), EVP_OpenInit(3)

HISTORY
EVP_SealFinal()did not return a value before OpenSSL 0.9.7.

242 2003-01-26 0.9.7c

EVP_SignInit(3) OpenSSL EVP_SignInit(3)

NAME
EVP_SignInit, EVP_SignUpdate, EVP_SignFinal − EVP signing functions

SYNOPSIS
#include <openssl/evp.h>

int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_SignFinal(EVP_MD_CTX *ctx,unsigned char *sig,unsigned int *s, EVP_PKEY *pkey);

void EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type);

int EVP_PKEY_size(EVP_PKEY *pkey);

DESCRIPTION
TheEVP signature routines are a high level interface to digital signatures.

EVP_SignInit_ex()sets up signing contextctx to use digesttype from ENGINE impl. ctx must be ini-
tialized withEVP_MD_CTX_init()before calling this function.

EVP_SignUpdate()hashescnt bytes of data atd into the signature contextctx. This function can be
called several times on the samectx to include additional data.

EVP_SignFinal()signs the data inctx using the private keypkey and places the signature insig. If the
s parameter is notNULL then the number of bytes of data written (i.e. the length of the signature) will
be written to the integer ats, at most EVP_PKEY_size(pkey) bytes will be written.

EVP_SignInit()initializes a signing contextctx to use the default implementation of digesttype.

EVP_PKEY_size()returns the maximum size of a signature in bytes. The actual signature returned by
EVP_SignFinal()may be smaller.

RETURN VALUES
EVP_SignInit_ex(), EVP_SignUpdate()andEVP_SignFinal()return 1 for success and 0 for failure.

EVP_PKEY_size()returns the maximum size of a signature in bytes.

The error codes can be obtained byERR_get_error(3).

NOTES
The EVP interface to digital signatures should almost always be used in preference to the low lev el
interfaces. This is because the code then becomes transparent to the algorithm used and much more
flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be
used with the correct public key type. A list of algorithms and associated public key algorithms appears
in EVP_DigestInit(3).

When signing withDSA private keys the random number generator must be seeded or the operation
will fail. The random number generator does not need to be seeded forRSA signatures.

The call toEVP_SignFinal()internally finalizes a copy of the digest context. This means that calls to
EVP_SignUpdate()andEVP_SignFinal()can be called later to digest and sign additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by
callingEVP_MD_CTX_cleanup()or a memory leak will occur.

BUGS
Older versions of this documentation wrongly stated that calls toEVP_SignUpdate()could not be made
after callingEVP_SignFinal().

SEE ALSO
EVP_VerifyInit(3), EVP_DigestInit(3), err (3), evp(3), hmac(3), md2(3), md5(3), mdc2(3),
ripemd(3), sha(3), dgst(1)

HISTORY
EVP_SignInit(), EVP_SignUpdate()andEVP_SignFinal()are available in all versions of SSLeay and
OpenSSL.

EVP_SignInit_ex()was added in OpenSSL 0.9.7.

0.9.7c 2002-07-18 243

EVP_VerifyInit(3) OpenSSL EVP_VerifyInit(3)

NAME
EVP_VerifyInit, EVP_VerifyUpdate, EVP_VerifyFinal − EVP signature verification functions

SYNOPSIS
#include <openssl/evp.h>

int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_VerifyFinal(EVP_MD_CTX *ctx,unsigned char *sigbuf, unsigned int siglen,EVP_PKEY *pkey);

int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type);

DESCRIPTION
TheEVP signature verification routines are a high level interface to digital signatures.

EVP_VerifyInit_ex()sets up verification contextctx to use digesttype from ENGINE impl . ctx must be
initialized by callingEVP_MD_CTX_init()before calling this function.

EVP_VerifyUpdate()hashescnt bytes of data atd into the verification contextctx. This function can be
called several times on the samectx to include additional data.

EVP_VerifyFinal()verifies the data inctx using the public keypkey and against thesiglenbytes atsig-
buf.

EVP_VerifyInit()initializes verification contextctx to use the default implementation of digesttype.

RETURN VALUES
EVP_VerifyInit_ex()andEVP_VerifyUpdate()return 1 for success and 0 for failure.

EVP_VerifyFinal()returns 1 for a correct signature, 0 for failure and −1 if some other error occurred.

The error codes can be obtained byERR_get_error(3).

NOTES
The EVP interface to digital signatures should almost always be used in preference to the low lev el
interfaces. This is because the code then becomes transparent to the algorithm used and much more
flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be
used with the correct public key type. A list of algorithms and associated public key algorithms appears
in EVP_DigestInit(3).

The call toEVP_VerifyFinal()internally finalizes a copy of the digest context. This means that calls to
EVP_VerifyUpdate()andEVP_VerifyFinal()can be called later to digest and verify additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by
callingEVP_MD_CTX_cleanup()or a memory leak will occur.

BUGS
Older versions of this documentation wrongly stated that calls toEVP_VerifyUpdate()could not be
made after callingEVP_VerifyFinal().

SEE ALSO
evp(3), EVP_SignInit(3), EVP_DigestInit(3), err (3), evp(3), hmac(3), md2(3), md5(3), mdc2(3),
ripemd(3), sha(3), dgst(1)

HISTORY
EVP_VerifyInit(), EVP_VerifyUpdate()andEVP_VerifyFinal()are available in all versions of SSLeay
and OpenSSL.

EVP_VerifyInit_ex()was added in OpenSSL 0.9.7

244 2002-07-10 0.9.7c

lh_stats(3) OpenSSL lh_stats(3)

NAME
lh_stats, lh_node_stats, lh_node_usage_stats, lh_stats_bio, lh_node_stats_bio, lh_node_usage_stats_bio
− LHASH statistics

SYNOPSIS
#include <openssl/lhash.h>

void lh_stats(LHASH *table, FILE *out);
void lh_node_stats(LHASH *table, FILE *out);
void lh_node_usage_stats(LHASH *table, FILE *out);

void lh_stats_bio(LHASH *table, BIO *out);
void lh_node_stats_bio(LHASH *table, BIO *out);
void lh_node_usage_stats_bio(LHASH *table, BIO *out);

DESCRIPTION
TheLHASH structure records statistics about most aspects of accessing the hash table. This is mostly a
legacy of Eric Young writing this library for the reasons of implementing what looked like a nice algo-
rithm rather than for a particular software product.

lh_stats()prints out statistics on the size of the hash table, how many entries are in it, and the number
and result of calls to the routines in this library.

lh_node_stats()prints the number of entries for each ’bucket’ in the hash table.

lh_node_usage_stats()prints out a short summary of the state of the hash table. It prints the ’load’ and
the ’actual load’. The load is the average number of data items per ’bucket’ in the hash table. The
’actual load’ is the average number of items per ’bucket’, but only for buckets which contain entries.
So the ’actual load’ is the average number of searches that will need to find an item in the hash table,
while the ’load’ is the average number that will be done to record a miss.

lh_stats_bio(), lh_node_stats_bio()and lh_node_usage_stats_bio()are the same as the above, except
that the output goes to aBIO .

RETURN VALUES
These functions do not return values.

SEE ALSO
bio (3), lhash(3)

HISTORY
These functions are available in all versions of SSLeay and OpenSSL.

This manpage is derived from the SSLeay documentation.

0.9.7c 2000-01-30 245

lhash(3) OpenSSL lhash(3)

NAME
lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall, lh_doall_arg, lh_error − dynamic hash table

SYNOPSIS
#include <openssl/lhash.h>

LHASH *lh_new(LHASH_HASH_FN_TYPE hash, LHASH_COMP_FN_TYPE compare);
void lh_free(LHASH *table);

void *lh_insert(LHASH *table, void *data);
void *lh_delete(LHASH *table, void *data);
void *lh_retrieve(LHASH *table, void *data);

void lh_doall(LHASH *table, LHASH_DOALL_FN_TYPE func);
void lh_doall_arg(LHASH *table, LHASH_DOALL_ARG_FN_TYPE func,

void *arg);

int lh_error(LHASH *table);

typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *);
typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *);
typedef void (*LHASH_DOALL_FN_TYPE)(const void *);
typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);

DESCRIPTION
This library implements dynamic hash tables. The hash table entries can be arbitrary structures. Usually
they consist of key and value fields.

lh_new()creates a newLHASH structure to store arbitrary data entries, and provides the ’hash’ and
’compare’ callbacks to be used in organising the table’s entries. Thehashcallback takes a pointer to a
table entry as its argument and returns an unsigned long hash value for its key field. The hash value is
normally truncated to a power of 2, so make sure that your hash function returns well mixed low order
bits. Thecompare callback takes two arguments (pointers to two hash table entries), and returns 0 if
their keys are equal, non-zero otherwise. If your hash table will contain items of some particular type
and the hash and compare callbacks hash/compare these types, then the
DECLARE_LHASH_HASH_FN and IMPLEMENT_LHASH_COMP_FN macros can be used to create
callback wrappers of the prototypes required bylh_new(). These provide per-variable casts before call-
ing the type-specific callbacks written by the application author. These macros, as well as those used
for the ‘‘doall’’ callbacks, are defined as;

#define DECLARE_LHASH_HASH_FN(f_name,o_type) \
unsigned long f_name##_LHASH_HASH(const void *);

#define IMPLEMENT_LHASH_HASH_FN(f_name,o_type) \
unsigned long f_name##_LHASH_HASH(const void *arg) { \

o_type a = (o_type)arg; \
return f_name(a); }

#define LHASH_HASH_FN(f_name) f_name##_LHASH_HASH

#define DECLARE_LHASH_COMP_FN(f_name,o_type) \
int f_name##_LHASH_COMP(const void *, const void *);

#define IMPLEMENT_LHASH_COMP_FN(f_name,o_type) \
int f_name##_LHASH_COMP(const void *arg1, const void *arg2) { \

o_type a = (o_type)arg1; \
o_type b = (o_type)arg2; \
return f_name(a,b); }

#define LHASH_COMP_FN(f_name) f_name##_LHASH_COMP

246 2002-07-18 0.9.7c

lhash(3) OpenSSL lhash(3)

#define DECLARE_LHASH_DOALL_FN(f_name,o_type) \
void f_name##_LHASH_DOALL(const void *);

#define IMPLEMENT_LHASH_DOALL_FN(f_name,o_type) \
void f_name##_LHASH_DOALL(const void *arg) { \

o_type a = (o_type)arg; \
f_name(a); }

#define LHASH_DOALL_FN(f_name) f_name##_LHASH_DOALL

#define DECLARE_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \
void f_name##_LHASH_DOALL_ARG(const void *, const void *);

#define IMPLEMENT_LHASH_DOALL_ARG_FN(f_name,o_type,a_type) \
void f_name##_LHASH_DOALL_ARG(const void *arg1, const void *arg2) { \

o_type a = (o_type)arg1; \
a_type b = (a_type)arg2; \
f_name(a,b); }

#define LHASH_DOALL_ARG_FN(f_name) f_name##_LHASH_DOALL_ARG

An example of a hash table storing (pointers to) structures of type ’STUFF’ could be defined as follows;

/* Calculates the hash value of ’tohash’ (implemented elsewhere) */
unsigned long STUFF_hash(const STUFF *tohash);
/* Orders ’arg1’ and ’arg2’ (implemented elsewhere) */
int STUFF_cmp(const STUFF *arg1, const STUFF *arg2);
/* Create the type-safe wrapper functions for use in the LHASH internals */
static IMPLEMENT_LHASH_HASH_FN(STUFF_hash, const STUFF *)
static IMPLEMENT_LHASH_COMP_FN(STUFF_cmp, const STUFF *);
/* ... */
int main(int argc, char *argv[]) {

/* Create the new hash table using the hash/compare wrappers */
LHASH *hashtable = lh_new(LHASH_HASH_FN(STUFF_hash),

LHASH_COMP_FN(STUFF_cmp));
/* ... */

}

lh_free()frees theLHASH structuretable. Allocated hash table entries will not be freed; consider using
lh_doall() to deallocate any remaining entries in the hash table (see below).

lh_insert()inserts the structure pointed to bydata into table. If there already is an entry with the same
key, the old value is replaced. Note thatlh_insert()stores pointers, the data are not copied.

lh_delete()deletes an entry fromtable.

lh_retrieve()looks up an entry intable. Normally,data is a structure with the key field(s) set; the func-
tion will return a pointer to a fully populated structure.

lh_doall() will, for every entry in the hash table, callfunc with the data item as its parameter. For
lh_doall()andlh_doall_arg(), function pointer casting should be avoided in the callbacks (seeNOTE) −
instead, either declare the callbacks to match the prototype required inlh_new() or use the
declare/implement macros to create type-safe wrappers that cast variables prior to calling your type-
specific callbacks. An example of this is illustrated here where the callback is used to cleanup
resources for items in the hash table prior to the hashtable itself being deallocated:

/* Cleans up resources belonging to ’a’ (this is implemented elsewhere) */
void STUFF_cleanup(STUFF *a);
/* Implement a prototype-compatible wrapper for "STUFF_cleanup" */
IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF *)

/* ... then later in the code ... */
/* So to run "STUFF_cleanup" against all items in a hash table ... */
lh_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup));
/* Then the hash table itself can be deallocated */
lh_free(hashtable);

When doing this, be careful if you delete entries from the hash table in your callbacks: the table may
decrease in size, moving the item that you are currently on down lower in the hash table − this could
cause some entries to be skipped during the iteration. The second best solution to this problem is to set

0.9.7c 2002-07-18 247

lhash(3) OpenSSL lhash(3)

hash−>down_load=0 before you start (which will stop the hash table ever decreasing in size). The best
solution is probably to avoid deleting items from the hash table inside a ‘‘doall’’ callback!

lh_doall_arg() is the same aslh_doall() except thatfunc will be called witharg as the second argu-
ment andfunc should be of typeLHASH_DOALL_ARG_FN_TYPE (a callback prototype that is passed
both the table entry and an extra argument). As withlh_doall(), you can instead choose to declare your
callback with a prototype matching the types you are dealing with and use the declare/implement
macros to create compatible wrappers that cast variables before calling your type-specific callbacks.
An example of this is demonstrated here (printing all hash table entries to aBIO that is provided by the
caller):

/* Prints item ’a’ to ’output_bio’ (this is implemented elsewhere) */
void STUFF_print(const STUFF *a, BIO *output_bio);
/* Implement a prototype-compatible wrapper for "STUFF_print" */
static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF_print, const STUFF *, BIO *)

/* ... then later in the code ... */
/* Print out the entire hashtable to a particular BIO */
lh_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), logging_bio);

lh_error() can be used to determine if an error occurred in the last operation.lh_error() is a macro.

RETURN VALUES
lh_new()returnsNULL on error, otherwise a pointer to the newLHASH structure.

When a hash table entry is replaced,lh_insert()returns the value being replaced.NULL is returned on
normal operation and on error.

lh_delete()returns the entry being deleted.NULL is returned if there is no such value in the hash table.

lh_retrieve()returns the hash table entry if it has been found,NULL otherwise.

lh_error() returns 1 if an error occurred in the last operation, 0 otherwise.

lh_free(), lh_doall()andlh_doall_arg()return no values.

NOTE
The variousLHASH macros and callback types exist to make it possible to write type-safe code without
resorting to function-prototype casting − an evil that makes application code much harder to audit/ver-
ify and also opens the window of opportunity for stack corruption and other hard-to-find bugs. It also,
apparently, violatesANSI−C.

The LHASH code regards table entries as constant data. As such, it internally representslh_insert()’d
items with a ‘‘const void *’’ pointer type. This is why callbacks such as those used bylh_doall() and
lh_doall_arg()declare their prototypes with ‘‘const’’, even for the parameters that pass back the table
items’ data pointers − for consistency, user-provided data is ‘‘const’’ at all times as far as theLHASH
code is concerned. However, as callers are themselves providing these pointers, they can choose
whether they too should be treating all such parameters as constant.

As an example, a hash table may be maintained by code that, for reasons of encapsulation, has only
‘‘const’’ access to the data being indexed in the hash table (ie. it is returned as ‘‘const’’ from elsewhere
in their code) − in this case theLHASH prototypes are appropriate as−is. Conversely, if the caller is
responsible for the life-time of the data in question, then they may well wish to make modifications to
table item passed back in thelh_doall() or lh_doall_arg()callbacks (see the ‘‘STUFF_cleanup’’ exam-
ple above). If so, the caller can either cast the ‘‘const’’ away (if they’re providing the raw callbacks
themselves) or use the macros to declare/implement the wrapper functions without ‘‘const’’ types.

Callers that only have ‘‘const’’ access to data they’re indexing in a table, yet declare callbacks without
constant types (or cast the ‘‘const’’ away themselves), are therefore creating their own risks/bugs with-
out being encouraged to do so by theAPI. On a related note, those auditing code should pay special
attention to any instances of DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that
provide types without any ‘‘const’’ qualifiers.

BUGS
lh_insert()returnsNULL both for success and error.

INTERNALS
The following description is based on the SSLeay documentation:

248 2002-07-18 0.9.7c

lhash(3) OpenSSL lhash(3)

The lhash library implements a hash table described in theCommunications of theACM in 1991. What
makes this hash table different is that as the table fills, the hash table is increased (or decreased) in size
via OPENSSL_realloc(). When a ’resize’ is done, instead of all hashes being redistributed over twice
as many ’buckets’, one bucket is split. So when an ’expand’ is done, there is only a minimal cost to
redistribute some values. Subsequent inserts will cause more single ’bucket’ redistributions but there
will never be a sudden large cost due to redistributing all the ’buckets’.

The state for a particular hash table is kept in theLHASH structure. The decision to increase or
decrease the hash table size is made depending on the ’load’ of the hash table. The load is the number
of items in the hash table divided by the size of the hash table. The default values are as follows. If
(hash−>up_load < load) => expand. if (hash−>down_load > load) => contract. Theup_load has a
default value of 1 anddown_load has a default value of 2. These numbers can be modified by the
application by just playing with theup_load anddown_load variables. The ’load’ is kept in a form
which is multiplied by 256. So hash−>up_load=8*256; will cause a load of 8 to be set.

If you are interested in performance the field to watch is num_comp_calls. The hash library keeps
track of the ’hash’ value for each item so when a lookup is done, the ’hashes’ are compared, if there is
a match, then a full compare is done, and hash−>num_comp_calls is incremented. If num_comp_calls
is not equal to num_delete plus num_retrieve it means that your hash function is generating hashes that
are the same for different values. It is probably worth changing your hash function if this is the case
because even if your hash table has 10 items in a ’bucket’, it can be searched with 10unsigned long
compares and 10 linked list traverses. This will be much less expensive that 10 calls to your compare
function.

lh_strhash()is a demo string hashing function:

unsigned long lh_strhash(const char *c);

Since theLHASH routines would normally be passed structures, this routine would not normally be
passed tolh_new(), rather it would be used in the function passed tolh_new().

SEE ALSO
lh_stats(3)

HISTORY
The lhash library is available in all versions of SSLeay and OpenSSL.lh_error() was added in SSLeay
0.9.1b.

This manpage is derived from the SSLeay documentation.

In OpenSSL 0.9.7, all lhash functions that were passed function pointers were changed for better type
safety, and the function types LHASH_COMP_FN_TYPE, LHASH_HASH_FN_TYPE,
LHASH_DOALL_FN_TYPEandLHASH_DOALL_ARG_FN_TYPEbecame available.

0.9.7c 2002-07-18 249

OBJ_nid2obj(3) OpenSSL OBJ_nid2obj(3)

NAME
OBJ_nid2obj, OBJ_nid2ln, OBJ_nid2sn, OBJ_obj2nid, OBJ_txt2nid, OBJ_ln2nid, OBJ_sn2nid,
OBJ_cmp, OBJ_dup, OBJ_txt2obj, OBJ_obj2txt, OBJ_create, OBJ_cleanup − ASN1 object utility
functions

SYNOPSIS
ASN1_OBJECT * OBJ_nid2obj(int n);
const char * OBJ_nid2ln(int n);
const char * OBJ_nid2sn(int n);

int OBJ_obj2nid(const ASN1_OBJECT *o);
int OBJ_ln2nid(const char *ln);
int OBJ_sn2nid(const char *sn);

int OBJ_txt2nid(const char *s);

ASN1_OBJECT * OBJ_txt2obj(const char *s, int no_name);
int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name);

int OBJ_cmp(const ASN1_OBJECT *a,const ASN1_OBJECT *b);
ASN1_OBJECT * OBJ_dup(const ASN1_OBJECT *o);

int OBJ_create(const char *oid,const char *sn,const char *ln);
void OBJ_cleanup(void);

DESCRIPTION
The ASN1 object utility functions processASN1_OBJECTstructures which are a representation of the
ASN1 OBJECT IDENTIFIER(OID) type.

OBJ_nid2obj(), OBJ_nid2ln()andOBJ_nid2sn()convert theNID n to anASN1_OBJECTstructure, its
long name and its short name respectively, orNULL is an error occurred.

OBJ_obj2nid(), OBJ_ln2nid(), OBJ_sn2nid()return the correspondingNID for the objecto, the long
name <ln> or the short name <sn> respectively or NID_undef if an error occurred.

OBJ_txt2nid()returnsNID corresponding to text string <s>.s can be a long name, a short name or the
numerical respresentation of an object.

OBJ_txt2obj()converts the text strings into anASN1_OBJECTstructure. Ifno_name is 0 then long
names and short names will be interpreted as well as numerical forms. Ifno_nameis 1 only the numer-
ical form is acceptable.

OBJ_obj2txt()converts theASN1_OBJECT a into a textual representation. The representation is writ-
ten as a null terminated string tobuf at mostbuf_len bytes are written, truncating the result if neces-
sary. The total amount of space required is returned. Ifno_nameis 0 then if the object has a long or
short name then that will be used, otherwise the numerical form will be used. Ifno_nameis 1 then the
numerical form will always be used.

OBJ_cmp()comparesa to b. If the two are identical 0 is returned.

OBJ_dup()returns a copy ofo.

OBJ_create()adds a new object to the internal table.oid is the numerical form of the object,sn the
short name andln the long name. A newNID is returned for the created object.

OBJ_cleanup()cleans up OpenSSLs internal object table: this should be called before an application
exits if any new objects were added usingOBJ_create().

NOTES
Objects in OpenSSL can have a short name, a long name and a numerical identifier (NID) associated
with them. A standard set of objects is represented in an internal table. The appropriate values are
defined in the header fileobjects.h.

For example theOID for commonName has the following definitions:

#define SN_commonName "CN"
#define LN_commonName "commonName"
#define NID_commonName 13

250 2002-10-20 0.9.7c

OBJ_nid2obj(3) OpenSSL OBJ_nid2obj(3)

New objects can be added by callingOBJ_create().

Table objects have certain advantages over other objects: for example their NIDs can be used in a C
language switch statement. They are also static constant structures which are shared: that is there is
only a single constant structure for each table object.

Objects which are not in the table have theNID value NID_undef.

Objects do not need to be in the internal tables to be processed, the functionsOBJ_txt2obj()and
OBJ_obj2txt()can process the numerical form of anOID.

EXAMPLES
Create an object forcommonName:

ASN1_OBJECT *o;
o = OBJ_nid2obj(NID_commonName);

Check if an object iscommonName

if (OBJ_obj2nid(obj) == NID_commonName)
/* Do something */

Create a newNID and initialize an object from it:

int new_nid;
ASN1_OBJECT *obj;
new_nid = OBJ_create("1.2.3.4", "NewOID", "New Object Identifier");

obj = OBJ_nid2obj(new_nid);

Create a new object directly:

obj = OBJ_txt2obj("1.2.3.4", 1);

BUGS
OBJ_obj2txt()is awkward and messy to use: it doesn’t follow the convention of other OpenSSL func-
tions where the buffer can be set toNULL to determine the amount of data that should be written.
Insteadbuf must point to a valid buffer andbuf_len should be set to a positive value. A buffer length of
80 should be more than enough to handle anyOID encountered in practice.

RETURN VALUES
OBJ_nid2obj()returns anASN1_OBJECT structure orNULL is an error occurred.

OBJ_nid2ln()andOBJ_nid2sn()returns a valid string orNULL on error.

OBJ_obj2nid(), OBJ_ln2nid(), OBJ_sn2nid()andOBJ_txt2nid()return aNID or NID_undef on error.

SEE ALSO
ERR_get_error(3)

HISTORY
TBA

0.9.7c 2002-10-20 251

OpenSSL_add_all_algorithms(3) OpenSSL OpenSSL_add_all_algorithms(3)

NAME
OpenSSL_add_all_algorithms, OpenSSL_add_all_ciphers, OpenSSL_add_all_digests − add algorithms
to internal table

SYNOPSIS
#include <openssl/evp.h>

void OpenSSL_add_all_algorithms(void);
void OpenSSL_add_all_ciphers(void);
void OpenSSL_add_all_digests(void);

void EVP_cleanup(void);

DESCRIPTION
OpenSSL keeps an internal table of digest algorithms and ciphers. It uses this table to lookup ciphers
via functions such asEVP_get_cipher_byname().

OpenSSL_add_all_digests()adds all digest algorithms to the table.

OpenSSL_add_all_algorithms()adds all algorithms to the table (digests and ciphers).

OpenSSL_add_all_ciphers()adds all encryption algorithms to the table including password based
encryption algorithms.

EVP_cleanup()removes all ciphers and digests from the table.

RETURN VALUES
None of the functions return a value.

NOTES
A typical application will will callOpenSSL_add_all_algorithms()initially and EVP_cleanup()before
exiting.

An application does not need to add algorithms to use them explicitly, for example byEVP_sha1(). It
just needs to add them if it (or any of the functions it calls) needs to lookup algorithms.

The cipher and digest lookup functions are used in many parts of the library. If the table is not initial-
ized several functions will misbehave and complain they cannot find algorithms. This includes the
PEM, PKCS#12,SSLand S/MIME libraries. This is a common query in the OpenSSL mailing lists.

Calling OpenSSL_add_all_algorithms()links in all algorithms: as a result a statically linked executable
can be quite large. If this is important it is possible to just add the required ciphers and digests.

BUGS
Although the functions do not return error codes it is possible for them to fail. This will only happen as
a result of a memory allocation failure so this is not too much of a problem in practice.

SEE ALSO
evp(3), EVP_DigestInit(3), EVP_EncryptInit(3)

252 2000-09-20 0.9.7c

OPENSSL_VERSION_NUMBER(3) OpenSSL OPENSSL_VERSION_NUMBER(3)

NAME
OPENSSL_VERSION_NUMBER, SSLeay, SSLeay_version − get OpenSSL version number

SYNOPSIS
#include <openssl/opensslv.h>
#define OPENSSL_VERSION_NUMBER 0xnnnnnnnnnL

#include <openssl/crypto.h>
long SSLeay(void);
const char *SSLeay_version(int t);

DESCRIPTION
OPENSSL_VERSION_NUMBERis a numeric release version identifier:

MMNNFFPPS: major minor fix patch status

The status nibble has one of the values 0 for development, 1 to e for betas 1 to 14, and f for release.

for example

0x000906000 == 0.9.6 dev
0x000906023 == 0.9.6b beta 3
0x00090605f == 0.9.6e release

Versions prior to 0.9.3 have identifiers < 0x0930. Versions between 0.9.3 and 0.9.5 had a version iden-
tifier with this interpretation:

MMNNFFRBB major minor fix final beta/patch

for example

0x000904100 == 0.9.4 release
0x000905000 == 0.9.5 dev

Version 0.9.5a had an interim interpretation that is like the current one, except the patch level got the
highest bit set, to keep continuity. The number was therefore 0x0090581f.

For backward compatibility,SSLEAY_VERSION_NUMBERis also defined.

SSLeay()returns this number. The return value can be compared to the macro to make sure that the cor-
rect version of the library has been loaded, especially when using DLLs on Windows systems.

SSLeay_version()returns different strings depending ont:

SSLEAY_VERSION
The text variant of the version number and the release date. For example, ‘‘OpenSSL 0.9.5a 1 Apr
2000’’.

SSLEAY_CFLAGS
The compiler flags set for the compilation process in the form ‘‘compiler: ...’’ if available or
‘‘compiler: information not available’’ otherwise.

SSLEAY_BUILT_ON
The date of the build process in the form ‘‘built on: ...’’ if available or ‘‘built on: date not avail-
able’’ otherwise.

SSLEAY_PLATFORM
The ‘‘Configure’’ target of the library build in the form ‘‘platform: ...’’ if available or ‘‘platform:
information not available’’ otherwise.

SSLEAY_DIR
The ‘‘OPENSSLDIR’’ setting of the library build in the form ‘‘OPENSSLDIR:’’..."‘‘ if available or
’’ OPENSSLDIR:N/A" otherwise.

For an unknownt, the text ‘‘not available’’ is returned.

RETURN VALUE
The version number.

0.9.7c 2002-01-04 253

OPENSSL_VERSION_NUMBER(3) OpenSSL OPENSSL_VERSION_NUMBER(3)

SEE ALSO
crypto(3)

HISTORY
SSLeay()and SSLEAY_VERSION_NUMBERare available in all versions of SSLeay and OpenSSL.
OPENSSL_VERSION_NUMBERis available in all versions of OpenSSL.SSLEAY_DIR was added in
OpenSSL 0.9.7.

254 2002-01-04 0.9.7c

PKCS12_create(3) OpenSSL PKCS12_create(3)

NAME
PKCS12_create − create a PKCS#12 structure

SYNOPSIS
#include <openssl/pkcs12.h>

PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509 *cert, STACK_OF(X509) *ca,
int nid_key, int nid_cert, int iter, int mac_iter, int keytype);

DESCRIPTION
PKCS12_create()creates a PKCS#12 structure.

passis the passphrase to use.name is the friendlyName to use for the supplied certifictate and key.
pkey is the private key to include in the structure andcert its corresponding certificates.ca, if not
NULL is an optional set of certificates to also include in the structure.

nid_key and nid_cert are the encryption algorithms that should be used for the key and certificate
respectively.iter is the encryption algorithm iteration count to use andmac_iter is theMAC iteration
count to use.keytype is the type of key.

NOTES
The parametersnid_key, nid_cert, iter, mac_iter and keytype can all be set to zero and sensible
defaults will be used.

These defaults are: 40 bitRC2 encryption for certificates, tripleDES encryption for private keys, a key
iteration count ofPKCS12_DEFAULT_ITER(currently 2048) and aMAC iteration count of 1.

The defaultMAC iteration count is 1 in order to retain compatibility with old software which did not
interpretMAC iteration counts. If such compatibility is not required thenmac_iter should be set to
PKCS12_DEFAULT_ITER.

keytypeadds a flag to the store private key. This is a non standard extension that is only currently inter-
preted byMSIE. If set to zero the flag is omitted, if set toKEY_SIG the key can be used for signing
only, if set toKEY_EX it can be used for signing and encryption. This option was useful for old export
grade software which could use signing only keys of arbitrary size but had restrictions on the permissi-
ble sizes of keys which could be used for encryption.

SEE ALSO
d2i_PKCS12(3)

HISTORY
PKCS12_create was added in OpenSSL 0.9.3

0.9.7c 2002-10-09 255

PKCS12_parse(3) OpenSSL PKCS12_parse(3)

NAME
PKCS12_parse − parse a PKCS#12 structure

SYNOPSIS
#include <openssl/pkcs12.h>

int PKCS12_parse(PKCS12 *p12, const char *pass,EVP_PKEY **pkey, X509 **cert,
STACK_OF(X509) **ca);

DESCRIPTION
PKCS12_parse()parses aPKCS12structure.

p12 is thePKCS12structure to parse.passis the passphrase to use. If successful the private key will be
written to*pkey, the corresponding certificate to*cert and any additional certificates to*ca.

NOTES
The parameterspkey andcert cannot beNULL . ca can be <NULL> in which case additional certifi-
cates will be discarded.*ca can also be a validSTACK in which case additional certificates are
appended to*ca. If *ca is NULL a newSTACK will be allocated.

The friendlyName andlocalKeyID attributes (if present) on each certificate will be stored in thealias
andkeyid attributes of theX509structure.

BUGS
Only a single private key and corresponding certificate is returned by this function. More complex
PKCS#12 files with multiple private keys will only return the first match.

Only friendlyName and localKeyID attributes are currently stored in certificates. Other attributes are
discarded.

Attributes currently cannot be store in the private keyEVP_PKEY structure.

SEE ALSO
d2i_PKCS12(3)

HISTORY
PKCS12_parse was added in OpenSSL 0.9.3

256 2002-10-09 0.9.7c

PKCS7_decrypt(3) OpenSSL PKCS7_decrypt(3)

NAME
PKCS7_decrypt − decrypt content from a PKCS#7 envelopedData structure

SYNOPSIS
int PKCS7_decrypt(PKCS7*p7, EVP_PKEY*pkey, X509 *cert,BIO *data, int flags);

DESCRIPTION
PKCS7_decrypt()extracts and decrypts the content from a PKCS#7 envelopedData structure.pkey is
the private key of the recipient,cert is the recipients certificate,data is a BIO to write the content to
andflags is an optional set of flags.

NOTES
OpenSSL_add_all_algorithms()(or equivalent) should be called before using this function or errors
about unknown algorithms will occur.

Although the recipients certificate is not needed to decrypt the data it is needed to locate the appropriate
(of possible several) recipients in the PKCS#7 structure.

The following flags can be passed in theflagsparameter.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are deleted from the content. If the
content is not of typetext/plain then an error is returned.

RETURN VALUES
PKCS7_decrypt()returns either 1 for success or 0 for failure. The error can be obtained from
ERR_get_error(3)

BUGS
PKCS7_decrypt()must be passed the correct recipient key and certificate. It would be better if it could
look up the correct key and certificate from a database.

The lack of single pass processing and need to hold all data in memory as mentioned inPKCS7_sign()
also applies toPKCS7_verify().

SEE ALSO
ERR_get_error(3), PKCS7_encrypt(3)

HISTORY
PKCS7_decrypt()was added to OpenSSL 0.9.5

0.9.7c 2002-10-09 257

PKCS7_encrypt(3) OpenSSL PKCS7_encrypt(3)

NAME
PKCS7_encrypt − create a PKCS#7 envelopedData structure

SYNOPSIS
PKCS7*PKCS7_encrypt(STACK_OF(X509) *certs,BIO *in, constEVP_CIPHER*cipher, int flags);

DESCRIPTION
PKCS7_encrypt()creates and returns a PKCS#7 envelopedData structure.certs is a list of recipient cer-
tificates.in is the content to be encrypted.cipher is the symmetric cipher to use.flags is an optional
set of flags.

NOTES
Only RSA keys are supported in PKCS#7 and envelopedData so the recipient certificates supplied to
this function must all containRSA public keys, though they do not have to be signed using theRSA
algorithm.

EVP_des_ede3_cbc()(triple DES) is the algorithm of choice for S/MIME use because most clients will
support it.

Some old ‘‘export grade’’ clients may only support weak encryption using 40 or 64 bitRC2. These can
be used by passingEVP_rc2_40_cbc()andEVP_rc2_64_cbc()respectively.

The algorithm passed in thecipher parameter must supportASN1 encoding of its parameters.

Many browsers implement a ‘‘sign and encrypt’’ option which is simply an S/MIME envelopedData
containing an S/MIME signed message. This can be readily produced by storing the S/MIME signed
message in a memoryBIO and passing it toPKCS7_encrypt().

The following flags can be passed in theflagsparameter.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are prepended to the data.

Normally the supplied content is translated intoMIME canonical format (as required by the S/MIME
specifications) ifPKCS7_BINARY is set no translation occurs. This option should be used if the sup-
plied data is in binary format otherwise the translation will corrupt it. IfPKCS7_BINARY is set then
PKCS7_TEXT is ignored.

RETURN VALUES
PKCS7_encrypt()returns either a validPKCS7structure orNULL if an error occurred. The error can be
obtained fromERR_get_error(3).

BUGS
The lack of single pass processing and need to hold all data in memory as mentioned inPKCS7_sign()
also applies toPKCS7_verify().

SEE ALSO
ERR_get_error(3), PKCS7_decrypt(3)

HISTORY
PKCS7_decrypt()was added to OpenSSL 0.9.5

258 2002-10-09 0.9.7c

PKCS7_sign(3) OpenSSL PKCS7_sign(3)

NAME
PKCS7_sign − create a PKCS#7 signedData structure

SYNOPSIS
PKCS7 *PKCS7_sign(X509 *signcert,EVP_PKEY *pkey, STACK_OF(X509) *certs, BIO *data, int
flags);

DESCRIPTION
PKCS7_sign()creates and returns a PKCS#7 signedData structure.signcert is the certificate to sign
with, pkey is the corresponsding private key.certs is an optional additional set of certificates to
include in the PKCS#7 structure (for example any intermediate CAs in the chain).

The data to be signed is read fromBIO data.

flags is an optional set of flags.

NOTES
Any of the following flags (ored together) can be passed in theflagsparameter.

Many S/MIME clients expect the signed content to include validMIME headers. If thePKCS7_TEXT
flag is setMIME headers for typetext/plain are prepended to the data.

If PKCS7_NOCERTS is set the signer’s certificate will not be included in thePKCS7 structure, the
signer’s certificate must still be supplied in thesigncert parameter though. This can reduce the size of
the signature if the signers certificate can be obtained by other means: for example a previously signed
message.

The data being signed is included in thePKCS7structure, unlessPKCS7_DETACHED is set in which
case it is omitted. This is used forPKCS7 detached signatures which are used in S/MIME plaintext
signed messages for example.

Normally the supplied content is translated intoMIME canonical format (as required by the S/MIME
specifications) ifPKCS7_BINARY is set no translation occurs. This option should be used if the sup-
plied data is in binary format otherwise the translation will corrupt it.

The signedData structure includes several PKCS#7 autenticatedAttributes including the signing time,
the PKCS#7 content type and the supported list of ciphers in an SMIMECapabilities attribute. If
PKCS7_NOATTR is set then no authenticatedAttributes will be used. IfPKCS7_NOSMIMECAP is set
then just the SMIMECapabilities are omitted.

If present the SMIMECapabilities attribute indicates support for the following algorithms: tripleDES,
128 bitRC2, 64 bit RC2, DES and 40 bitRC2. If any of these algorithms is disabled then it will not be
included.

BUGS
PKCS7_sign()is somewhat limited. It does not support multiple signers, some advanced attributes such
as counter signatures are not supported.

TheSHA1 digest algorithm is currently always used.

When the signed data is not detached it will be stored in memory within thePKCS7 structure. This
effectively limits the size of messages which can be signed due to memory restraints. There should be a
way to sign data without having to hold it all in memory, this would however require fairly major revi-
sions of the OpenSSLASN1 code.

Clear text signing does not store the content in memory but the wayPKCS7_sign()operates means that
two passes of the data must typically be made: one to compute the signatures and a second to output the
data along with the signature. There should be a way to process the data with only a single pass.

RETURN VALUES
PKCS7_sign()returns either a validPKCS7structure orNULL if an error occurred. The error can be
obtained fromERR_get_error(3).

SEE ALSO
ERR_get_error(3), PKCS7_verify(3)

0.9.7c 2002-10-09 259

PKCS7_sign(3) OpenSSL PKCS7_sign(3)

HISTORY
PKCS7_sign()was added to OpenSSL 0.9.5

260 2002-10-09 0.9.7c

PKCS7_verify(3) OpenSSL PKCS7_verify(3)

NAME
PKCS7_verify − verify a PKCS#7 signedData structure

SYNOPSIS
int PKCS7_verify(PKCS7*p7, STACK_OF(X509) *certs, X509_STORE *store,BIO *indata,BIO *out,
int flags);

int PKCS7_get0_signers(PKCS7*p7, STACK_OF(X509) *certs, int flags);

DESCRIPTION
PKCS7_verify()verifies a PKCS#7 signedData structure.p7 is thePKCS7structure to verify.certs is a
set of certificates in which to search for the signer’s certificate.store is a trusted certficate store (used
for chain verification).indata is the signed data if the content is not present inp7 (that is it is
detached). The content is written toout if it is not NULL.

flags is an optional set of flags, which can be used to modify the verify operation.

PKCS7_get0_signers()retrieves the signer’s certificates fromp7, it doesnot check their validity or
whether any signatures are valid. Thecerts and flags parameters have the same meanings as in
PKCS7_verify().

VERIFY PROCESS
Normally the verify process proceeds as follows.

Initially some sanity checks are performed onp7. The type ofp7 must be signedData. There must be at
least one signature on the data and if the content is detachedindata cannot beNULL .

An attempt is made to locate all the signer’s certificates, first looking in thecerts parameter (if it is not
NULL) and then looking in any certificates contained in thep7 structure itself. If any signer’s certifi-
cates cannot be located the operation fails.

Each signer’s certificate is chain verified using thesmimesignpurpose and the supplied trusted certifi-
cate store. Any internal certificates in the message are used as untrusted CAs. If any chain verify fails
an error code is returned.

Finally the signed content is read (and written toout is it is notNULL) and the signature’s checked.

If all signature’s verify correctly then the function is successful.

Any of the following flags (ored together) can be passed in theflags parameter to change the default
verify behaviour. Only the flagPKCS7_NOINTERN is meaningful toPKCS7_get0_signers().

If PKCS7_NOINTERN is set the certificates in the message itself are not searched when locating the
signer’s certificate. This means that all the signers certificates must be in thecertsparameter.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are deleted from the content. If the
content is not of typetext/plain then an error is returned.

If PKCS7_NOVERIFY is set the signer’s certificates are not chain verified.

If PKCS7_NOCHAIN is set then the certificates contained in the message are not used as untrusted
CAs. This means that the whole verify chain (apart from the signer’s certificate) must be contained in
the trusted store.

If PKCS7_NOSIGSis set then the signatures on the data are not checked.

NOTES
One application ofPKCS7_NOINTERN is to only accept messages signed by a small number of certifi-
cates. The acceptable certificates would be passed in thecertsparameter. In this case if the signer is not
one of the certificates supplied incerts then the verify will fail because the signer cannot be found.

Care should be taken when modifying the default verify behaviour, for example setting
PKCS7_NOVERIFY PKCS7_NOSIGSwill totally disable all verification and any signed message
will be considered valid. This combination is however useful if one merely wishes to write the content
to out and its validity is not considered important.

Chain verification should arguably be performed using the signing time rather than the current time.
However since the signing time is supplied by the signer it cannot be trusted without additional evi-
dence (such as a trusted timestamp).

0.9.7c 2002-10-09 261

PKCS7_verify(3) OpenSSL PKCS7_verify(3)

RETURN VALUES
PKCS7_verify()returns 1 for a successful verification and zero or a negative value if an error occurs.

PKCS7_get0_signers()returns all signers orNULL if an error occurred.

The error can be obtained fromERR_get_error(3)

BUGS
The trusted certificate store is not searched for the signers certificate, this is primarily due to the inade-
quacies of the currentX509_STOREfunctionality.

The lack of single pass processing and need to hold all data in memory as mentioned inPKCS7_sign()
also applies toPKCS7_verify().

SEE ALSO
ERR_get_error(3), PKCS7_sign(3)

HISTORY
PKCS7_verify()was added to OpenSSL 0.9.5

262 2002-10-09 0.9.7c

rand(3) OpenSSL rand(3)

NAME
rand − pseudo−random number generator

SYNOPSIS
#include <openssl/rand.h>

int RAND_set_rand_engine(ENGINE *engine);

int RAND_bytes(unsigned char *buf, int num);
int RAND_pseudo_bytes(unsigned char *buf, int num);

void RAND_seed(const void *buf, int num);
void RAND_add(const void *buf, int num, int entropy);
int RAND_status(void);

int RAND_load_file(const char *file, long max_bytes);
int RAND_write_file(const char *file);
const char *RAND_file_name(char *file, size_t num);

int RAND_egd(const char *path);

void RAND_set_rand_method(const RAND_METHOD *meth);
const RAND_METHOD *RAND_get_rand_method(void);
RAND_METHOD *RAND_SSLeay(void);

void RAND_cleanup(void);

/* For Win32 only */
void RAND_screen(void);
int RAND_event(UINT, WPARAM, LPARAM);

DESCRIPTION
Since the introduction of theENGINE API, the recommended way of controlling default implementa-
tions is by using theENGINE API functions. The defaultRAND_METHOD , as set by
RAND_set_rand_method()and returned byRAND_get_rand_method(), is only used if noENGINE has
been set as the default ‘‘rand’’ implementation. Hence, these two functions are no longer the
recommened way to control defaults.

If an alternativeRAND_METHOD implementation is being used (either set directly or as provided by
an ENGINE module), then it is entirely responsible for the generation and management of a crypto-
graphically securePRNGstream. The mechanisms described below relate solely to the softwarePRNG
implementation built in to OpenSSL and used by default.

These functions implement a cryptographically secure pseudo-random number generator (PRNG). It is
used by other library functions for example to generate random keys, and applications can use it when
they need randomness.

A cryptographicPRNG must be seeded with unpredictable data such as mouse movements or keys
pressed at random by the user. This is described inRAND_add(3). Its state can be saved in a seed file
(seeRAND_load_file(3)) to avoid having to go through the seeding process whenever the application is
started.

RAND_bytes(3) describes how to obtain random data from thePRNG.

INTERNALS
TheRAND_SSLeay()method implements aPRNGbased on a cryptographic hash function.

The following description of its design is based on the SSLeay documentation:

First up I will state the things I believe I need for a goodRNG.

1 A good hashing algorithm to mix things up and to convert theRNG ’state’ to random numbers.

2 An initial source of random ’state’.

3 The state should be very large. If theRNG is being used to generate 4096 bitRSA keys, 2 2048 bit
random strings are required (at a minimum). If yourRNG state only has 128 bits, you are obvi-
ously limiting the search space to 128 bits, not 2048. I’m probably getting a little carried away on
this last point but it does indicate that it may not be a bad idea to keep quite a lot ofRNG state. It

0.9.7c 2002-08-05 263

rand(3) OpenSSL rand(3)

should be easier to break a cipher than guess theRNG seed data.

4 Any RNG seed data should influence all subsequent random numbers generated.This implies that
any random seed data entered will have an influence on all subsequent random numbers generated.

5 When using data to seed theRNG state, the data used should not be extractable from theRNG
state. I believe this should be a requirement because one possible source of ’secret’ semi random
data would be a private key or a password. This data must not be disclosed by either subsequent
random numbers or a ’core’ dump left by a program crash.

6 Giv en the same initial ’state’, 2 systems should deviate in theirRNG state (and hence the random
numbers generated) over time if at all possible.

7 Giv en the random number output stream, it should not be possible to determine theRNG state or
the next random number.

The algorithm is as follows.

There is global state made up of a 1023 byte buffer (the ’state’), a working hash value (’md’), and a
counter (’count’).

Whenever seed data is added, it is inserted into the ’state’ as follows.

The input is chopped up into units of 20 bytes (or less for the last block). Each of these blocks is run
through the hash function as follows: The data passed to the hash function is the current ’md’, the
same number of bytes from the ’state’ (the location determined by in incremented looping index) as the
current ’block’, the new key data ’block’, and ’count’ (which is incremented after each use). The result
of this is kept in ’md’ and also xored into the ’state’ at the same locations that were used as input into
the hash function. I believe this system addresses points 1 (hash function; currentlySHA−1), 3 (the
’state’), 4 (via the ’md’), 5 (by the use of a hash function and xor).

When bytes are extracted from theRNG, the following process is used. For each group of 10 bytes (or
less), we do the following:

Input into the hash function the local ’md’ (which is initialized from the global ’md’ before any bytes
are generated), the bytes that are to be overwritten by the random bytes, and bytes from the ’state’
(incrementing looping index). From this digest output (which is kept in ’md’), the top (up to) 10 bytes
are returned to the caller and the bottom 10 bytes are xored into the ’state’.

Finally, after we have finished ’num’ random bytes for the caller, ’count’ (which is incremented) and
the local and global ’md’ are fed into the hash function and the results are kept in the global ’md’.

I believe the above addressed points 1 (use ofSHA−1), 6 (by hashing into the ’state’ the ’old’ data from
the caller that is about to be overwritten) and 7 (by not using the 10 bytes given to the caller to update
the ’state’, but they are used to update ’md’).

So of the points raised, only 2 is not addressed (but seeRAND_add(3)).

SEE ALSO
BN_rand(3), RAND_add(3), RAND_load_file(3), RAND_egd(3), RAND_bytes(3),
RAND_set_rand_method(3), RAND_cleanup(3)

264 2002-08-05 0.9.7c

RAND_add(3) OpenSSL RAND_add(3)

NAME
RAND_add, RAND_seed, RAND_status, RAND_event, RAND_screen − add entropy to the PRNG

SYNOPSIS
#include <openssl/rand.h>

void RAND_seed(const void *buf, int num);

void RAND_add(const void *buf, int num, double entropy);

int RAND_status(void);

int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam);
void RAND_screen(void);

DESCRIPTION
RAND_add()mixes thenum bytes atbuf into thePRNGstate. Thus, if the data atbuf are unpredictable
to an adversary, this increases the uncertainty about the state and makes thePRNG output less pre-
dictable. Suitable input comes from user interaction (random key presses, mouse movements) and cer-
tain hardware events. Theentropy argument is (the lower bound of) an estimate of how much random-
ness is contained inbuf, measured in bytes. Details about sources of randomness and how to estimate
their entropy can be found in the literature, e.g.RFC1750.

RAND_add()may be called with sensitive data such as user entered passwords. The seed values cannot
be recovered from thePRNGoutput.

OpenSSL makes sure that thePRNG state is unique for each thread. On systems that provide
/dev/urandom, the randomness device is used to seed thePRNGtransparently. Howev er, on all other
systems, the application is responsible for seeding thePRNGby callingRAND_add(),RAND_egd(3) or
RAND_load_file(3).

RAND_seed()is equivalent toRAND_add()whennum == entropy.

RAND_event()collects the entropy from Windows events such as mouse movements and other user
interaction. It should be called with theiMsg, wParam andlParam arguments ofall messages sent to
the window procedure. It will estimate the entropy contained in the event message (if any), and add it to
thePRNG. The program can then process the messages as usual.

The RAND_screen()function is available for the convenience of Windows programmers. It adds the
current contents of the screen to thePRNG. For applications that can catch Windows events, seeding
the PRNG by calling RAND_event()is a significantly better source of randomness. It should be noted
that both methods cannot be used on servers that run without user interaction.

RETURN VALUES
RAND_status()andRAND_event()return 1 if thePRNGhas been seeded with enough data, 0 otherwise.

The other functions do not return values.

SEE ALSO
rand(3), RAND_egd(3), RAND_load_file(3), RAND_cleanup(3)

HISTORY
RAND_seed()andRAND_screen()are available in all versions of SSLeay and OpenSSL.RAND_add()
andRAND_status()have been added in OpenSSL 0.9.5,RAND_event()in OpenSSL 0.9.5a.

0.9.7c 2000-03-22 265

RAND_bytes(3) OpenSSL RAND_bytes(3)

NAME
RAND_bytes, RAND_pseudo_bytes − generate random data

SYNOPSIS
#include <openssl/rand.h>

int RAND_bytes(unsigned char *buf, int num);

int RAND_pseudo_bytes(unsigned char *buf, int num);

DESCRIPTION
RAND_bytes()putsnum cryptographically strong pseudo-random bytes intobuf. An error occurs if the
PRNGhas not been seeded with enough randomness to ensure an unpredictable byte sequence.

RAND_pseudo_bytes()putsnum pseudo-random bytes intobuf. Pseudo-random byte sequences gen-
erated byRAND_pseudo_bytes()will be unique if they are of sufficient length, but are not necessarily
unpredictable. They can be used for non-cryptographic purposes and for certain purposes in crypto-
graphic protocols, but usually not for key generation etc.

RETURN VALUES
RAND_bytes()returns 1 on success, 0 otherwise. The error code can be obtained byERR_get_error(3).
RAND_pseudo_bytes()returns 1 if the bytes generated are cryptographically strong, 0 otherwise. Both
functions return −1 if they are not supported by the currentRAND method.

SEE ALSO
rand(3), ERR_get_error(3), RAND_add(3)

HISTORY
RAND_bytes()is available in all versions of SSLeay and OpenSSL. It has a return value since
OpenSSL 0.9.5.RAND_pseudo_bytes()was added in OpenSSL 0.9.5.

266 2002-09-25 0.9.7c

RAND_cleanup(3) OpenSSL RAND_cleanup(3)

NAME
RAND_cleanup − erase the PRNG state

SYNOPSIS
#include <openssl/rand.h>

void RAND_cleanup(void);

DESCRIPTION
RAND_cleanup()erases the memory used by thePRNG.

RETURN VALUE
RAND_cleanup()returns no value.

SEE ALSO
rand(3)

HISTORY
RAND_cleanup()is available in all versions of SSLeay and OpenSSL.

0.9.7c 2000-01-27 267

RAND_egd(3) OpenSSL RAND_egd(3)

NAME
RAND_egd − query entropy gathering daemon

SYNOPSIS
#include <openssl/rand.h>

int RAND_egd(const char *path);
int RAND_egd_bytes(const char *path, int bytes);

int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes);

DESCRIPTION
RAND_egd()queries the entropy gathering daemonEGD on socketpath. It queries 255 bytes and uses
RAND_add(3) to seed the OpenSSL built-inPRNG. RAND_egd(path) is a wrapper for
RAND_egd_bytes(path, 255);

RAND_egd_bytes()queries the entropy gathering daemonEGD on socketpath. It queriesbytesbytes
and usesRAND_add(3) to seed the OpenSSL built-inPRNG. This function is more flexible than
RAND_egd(). When only one secret key must be generated, it is not necessary to request the full
amount 255 bytes from theEGD socket. This can be advantageous, since the amount of entropy that can
be retrieved fromEGD over time is limited.

RAND_query_egd_bytes()performs the actual query of theEGD daemon on socketpath. If buf is
given,bytesbytes are queried and written intobuf. If buf is NULL, bytesbytes are queried and used to
seed the OpenSSL built-inPRNGusingRAND_add(3).

NOTES
On systems without /dev/*random devices providing entropy from the kernel, theEGD entropy gather-
ing daemon can be used to collect entropy. It provides a socket interface through which entropy can be
gathered in chunks up to 255 bytes. Several chunks can be queried during one connection.

EGD is available from http://www.lothar.com/tech/crypto/ (perl Makefile.PL; make; make
install to install). It is run asegdpath, wherepath is an absolute path designating a socket. When
RAND_egd()is called with that path as an argument, it tries to read random bytes thatEGD has col-
lected. The read is performed in non-blocking mode.

Alternatively, the EGD-interface compatible daemonPRNGD can be used. It is available from
http://www.aet.tu−cottbus.de/personen/jaenicke/postfix_tls/prngd.html .PRNGDdoes employ an inter-
nal PRNGitself and can therefore never run out of entropy.

OpenSSL automatically queriesEGD when entropy is requested viaRAND_bytes()or the status is
checked via RAND_status()for the first time, if the socket is located at /var/run/egd−pool,
/dev/egd−pool or /etc/egd−pool.

RETURN VALUE
RAND_egd()andRAND_egd_bytes()return the number of bytes read from the daemon on success, and
−1 if the connection failed or the daemon did not return enough data to fully seed thePRNG.

RAND_query_egd_bytes()returns the number of bytes read from the daemon on success, and −1 if the
connection failed. ThePRNGstate is not considered.

SEE ALSO
rand(3), RAND_add(3), RAND_cleanup(3)

HISTORY
RAND_egd()is available since OpenSSL 0.9.5.

RAND_egd_bytes()is available since OpenSSL 0.9.6.

RAND_query_egd_bytes()is available since OpenSSL 0.9.7.

The automatic query of /var/run/egd−pool et al was added in OpenSSL 0.9.7.

268 2001-02-10 0.9.7c

RAND_load_file(3) OpenSSL RAND_load_file(3)

NAME
RAND_load_file, RAND_write_file, RAND_file_name − PRNG seed file

SYNOPSIS
#include <openssl/rand.h>

const char *RAND_file_name(char *buf, size_t num);

int RAND_load_file(const char *filename, long max_bytes);

int RAND_write_file(const char *filename);

DESCRIPTION
RAND_file_name()generates a default path for the random seed file.buf points to a buffer of sizenum
in which to store the filename. The seed file is$RANDFILE if that environment variable is set,
$HOME/.rnd otherwise. If$HOMEis not set either, ornum is too small for the path name, an error
occurs.

RAND_load_file()reads a number of bytes from filefilename and adds them to thePRNG. If
max_bytesis non−negative, up to tomax_bytesare read; starting with OpenSSL 0.9.5, ifmax_bytes
is −1, the complete file is read.

RAND_write_file()writes a number of random bytes (currently 1024) to filefilename which can be
used to initialize thePRNGby callingRAND_load_file()in a later session.

RETURN VALUES
RAND_load_file()returns the number of bytes read.

RAND_write_file()returns the number of bytes written, and −1 if the bytes written were generated
without appropriate seed.

RAND_file_name()returns a pointer tobuf on success, andNULL on error.

SEE ALSO
rand(3), RAND_add(3), RAND_cleanup(3)

HISTORY
RAND_load_file(), RAND_write_file()andRAND_file_name()are available in all versions of SSLeay
and OpenSSL.

0.9.7c 2001-03-21 269

RAND_set_rand_method(3) OpenSSL RAND_set_rand_method(3)

NAME
RAND_set_rand_method, RAND_get_rand_method, RAND_SSLeay − select RAND method

SYNOPSIS
#include <openssl/rand.h>

void RAND_set_rand_method(const RAND_METHOD *meth);

const RAND_METHOD *RAND_get_rand_method(void);

RAND_METHOD *RAND_SSLeay(void);

DESCRIPTION
A RAND_METHOD specifies the functions that OpenSSL uses for random number generation. By
modifying the method, alternative implementations such as hardware RNGs may be used.IMPORTANT:
See theNOTESsection for important information about how theseRAND API functions are affected by
the use ofENGINE API calls.

Initially, the default RAND_METHOD is the OpenSSL internal implementation, as returned by
RAND_SSLeay().

RAND_set_default_method()makesmeth the method forPRNG use.NB: This is true only whilst no
ENGINE has been set as a default forRAND, so this function is no longer recommended.

RAND_get_default_method()returns a pointer to the currentRAND_METHOD. Howev er, the meaning-
fulness of this result is dependant on whether theENGINE API is being used, so this function is no
longer recommended.

THE RAND_METHOD STRUCTURE
typedef struct rand_meth_st
{

void (*seed)(const void *buf, int num);
int (*bytes)(unsigned char *buf, int num);
void (*cleanup)(void);
void (*add)(const void *buf, int num, int entropy);
int (*pseudorand)(unsigned char *buf, int num);
int (*status)(void);

} RAND_METHOD;

The components point to the implementation ofRAND_seed(), RAND_bytes(),RAND_cleanup(),
RAND_add(), RAND_pseudo_rand()andRAND_status(). Each component may beNULL if the func-
tion is not implemented.

RETURN VALUES
RAND_set_rand_method()returns no value.RAND_get_rand_method()and RAND_SSLeay()return
pointers to the respective methods.

NOTES
As of version 0.9.7,RAND_METHOD implementations are grouped together with other algorithmic
APIs (eg.RSA_METHOD, EVP_CIPHER, etc) inENGINE modules. If a defaultENGINE is specified for
RAND functionality using anENGINE API function, that will override anyRAND defaults set using the
RAND API (ie. RAND_set_rand_method()). For this reason, theENGINE API is the recommended way
to control default implementations for use inRAND and other cryptographic algorithms.

SEE ALSO
rand(3), engine(3)

HISTORY
RAND_set_rand_method(), RAND_get_rand_method()and RAND_SSLeay()are available in all ver-
sions of OpenSSL.

In the engine version of version 0.9.6,RAND_set_rand_method()was altered to take anENGINE
pointer as its argument. As of version 0.9.7, that has been reverted as theENGINE API transparently
overrides RAND defaults if used, otherwiseRAND API functions work as before.
RAND_set_rand_engine()was also introduced in version 0.9.7.

270 2002-08-05 0.9.7c

ripemd(3) OpenSSL ripemd(3)

NAME
RIPEMD160, RIPEMD160_Init, RIPEMD160_Update, RIPEMD160_Final − RIPEMD−160 hash
function

SYNOPSIS
#include <openssl/ripemd.h>

unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
unsigned char *md);

void RIPEMD160_Init(RIPEMD160_CTX *c);
void RIPEMD160_Update(RIPEMD_CTX *c, const void *data,

unsigned long len);
void RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);

DESCRIPTION
RIPEMD−160is a cryptographic hash function with a 160 bit output.

RIPEMD160() computes theRIPEMD−160message digest of then bytes atd and places it inmd (which
must have space forRIPEMD160_DIGEST_LENGTH== 20 bytes of output). Ifmd is NULL, the digest is
placed in a static array.

The following functions may be used if the message is not completely stored in memory:

RIPEMD160_Init()initializes aRIPEMD160_CTX structure.

RIPEMD160_Update()can be called repeatedly with chunks of the message to be hashed (len bytes at
data).

RIPEMD160_Final() places the message digest inmd, which must have space for
RIPEMD160_DIGEST_LENGTH== 20 bytes of output, and erases theRIPEMD160_CTX.

Applications should use the higher level functionsEVP_DigestInit(3) etc. instead of calling the hash
functions directly.

RETURN VALUES
RIPEMD160() returns a pointer to the hash value.

RIPEMD160_Init(), RIPEMD160_Update()andRIPEMD160_Final()do not return values.

CONFORMING TO
ISO/IEC10118−3 (draft) (??)

SEE ALSO
sha(3), hmac(3), EVP_DigestInit(3)

HISTORY
RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update()andRIPEMD160_Final()are available since
SSLeay 0.9.0.

0.9.7c 2000-02-25 271

rsa(3) OpenSSL rsa(3)

NAME
rsa − RSA public key cryptosystem

SYNOPSIS
#include <openssl/rsa.h>
#include <openssl/engine.h>

RSA * RSA_new(void);
void RSA_free(RSA *rsa);

int RSA_public_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

int RSA_sign(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

int RSA_size(const RSA *rsa);

RSA *RSA_generate_key(int num, unsigned long e,
void (*callback)(int,int,void *), void *cb_arg);

int RSA_check_key(RSA *rsa);

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
void RSA_blinding_off(RSA *rsa);

void RSA_set_default_method(const RSA_METHOD *meth);
const RSA_METHOD *RSA_get_default_method(void);
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);
const RSA_METHOD *RSA_get_method(const RSA *rsa);
RSA_METHOD *RSA_PKCS1_SSLeay(void);
RSA_METHOD *RSA_null_method(void);
int RSA_flags(const RSA *rsa);
RSA *RSA_new_method(ENGINE *engine);

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

int RSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
int (*dup_func)(), void (*free_func)());

int RSA_set_ex_data(RSA *r,int idx,char *arg);
char *RSA_get_ex_data(RSA *r, int idx);

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
RSA *rsa);

int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
RSA *rsa);

DESCRIPTION
These functions implementRSA public key encryption and signatures as defined inPKCS#1 v2.0 [RFC
2437].

The RSA structure consists of severalBIGNUM components. It can contain public as well as private
RSA keys:

272 2002-08-04 0.9.7c

rsa(3) OpenSSL rsa(3)

struct
{
BIGNUM *n; // public modulus
BIGNUM *e; // public exponent
BIGNUM *d; // private exponent
BIGNUM *p; // secret prime factor
BIGNUM *q; // secret prime factor
BIGNUM *dmp1; // d mod (p-1)
BIGNUM *dmq1; // d mod (q-1)
BIGNUM *iqmp; // qˆ-1 mod p
// ...
};

RSA

In public keys, the private exponent and the related secret values areNULL .

p, q, dmp1, dmq1 and iqmp may beNULL in private keys, but theRSA operations are much faster
when these values are available.

Note thatRSA keys may use non-standardRSA_METHOD implementations, either directly or by the
use ofENGINE modules. In some cases (eg. anENGINE providing support for hardware-embedded
keys), theseBIGNUM values will not be used by the implementation or may be used for alternative data
storage. For this reason, applications should generally avoid usingRSA structure elements directly and
instead useAPI functions to query or modify keys.

CONFORMING TO
SSL, PKCS#1 v2.0

PATENTS
RSA was covered by aUS patent which expired in September 2000.

SEE ALSO
rsa(1), bn(3), dsa(3), dh(3), rand(3), engine(3), RSA_new(3), RSA_public_encrypt(3), RSA_sign(3),
RSA_size(3), RSA_generate_key(3), RSA_check_key(3), RSA_blinding_on(3), RSA_set_method(3),
RSA_print(3), RSA_get_ex_new_index(3), RSA_private_encrypt(3),
RSA_sign_ASN1_OCTET_STRING(3), RSA_padding_add_PKCS1_type_1(3)

0.9.7c 2002-08-04 273

RSA_blinding_on(3) OpenSSL RSA_blinding_on(3)

NAME
RSA_blinding_on, RSA_blinding_off − protect the RSA operation from timing attacks

SYNOPSIS
#include <openssl/rsa.h>

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);

void RSA_blinding_off(RSA *rsa);

DESCRIPTION
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time ofRSA decryption
or signature operations, blinding must be used to protect theRSA operation from that attack.

RSA_blinding_on()turns blinding on for keyrsa and generates a random blinding factor.ctx is NULL
or a pre-allocated and initializedBN_CTX. The random number generator must be seeded prior to call-
ing RSA_blinding_on().

RSA_blinding_off()turns blinding off and frees the memory used for the blinding factor.

RETURN VALUES
RSA_blinding_on()returns 1 on success, and 0 if an error occurred.

RSA_blinding_off()returns no value.

SEE ALSO
rsa(3), rand(3)

HISTORY
RSA_blinding_on()andRSA_blinding_off()appeared in SSLeay 0.9.0.

274 2000-02-24 0.9.7c

RSA_check_key(3) OpenSSL RSA_check_key(3)

NAME
RSA_check_key − validate private RSA keys

SYNOPSIS
#include <openssl/rsa.h>

int RSA_check_key(RSA *rsa);

DESCRIPTION
This function validatesRSA keys. It checks thatp andq are in fact prime, and thatn = p*q .

It also checks thatd*e = 1 mod (p−1*q−1), and thatdmp1, dmq1 and iqmp are set correctly or are
NULL .

As such, this function can not be used with any arbitraryRSA key object, even if it is otherwise fit for
regularRSA operation. SeeNOTES for more information.

RETURN VALUE
RSA_check_key()returns 1 ifrsa is a validRSA key, and 0 otherwise. −1 is returned if an error occurs
while checking the key.

If the key is inv alid or an error occurred, the reason code can be obtained usingERR_get_error(3).

NOTES
This function does not work onRSA public keys that have only the modulus and public exponent ele-
ments populated. It performs integrity checks on all theRSA key material, so theRSA key structure
must contain all the private key data too.

Unlike most otherRSA functions, this function doesnot work transparently with any underlying
ENGINE implementation because it uses the key data in theRSA structure directly. AnENGINE imple-
mentation can override the way key data is stored and handled, and can even provide support forHSM
keys − in which case theRSA structure may containno key data at all! If theENGINE in question is
only being used for acceleration or analysis purposes, then in all likelihood theRSA key data is com-
plete and untouched, but this can’t be assumed in the general case.

BUGS
A method of verifying theRSA key using opaqueRSA API functions might need to be considered.
Right now RSA_check_key()simply uses theRSA structure elements directly, bypassing the
RSA_METHOD table altogether (and completely violating encapsulation and object-orientation in the
process). The best fix will probably be to introduce a ‘‘check_key()’’ handler to theRSA_METHOD
function table so that alternative implementations can also provide their own verifiers.

SEE ALSO
rsa(3), ERR_get_error(3)

HISTORY
RSA_check_key()appeared in OpenSSL 0.9.4.

0.9.7c 2002-09-25 275

RSA_generate_key(3) OpenSSL RSA_generate_key(3)

NAME
RSA_generate_key − generate RSA key pair

SYNOPSIS
#include <openssl/rsa.h>

RSA *RSA_generate_key(int num, unsigned long e,
void (*callback)(int,int,void *), void *cb_arg);

DESCRIPTION
RSA_generate_key()generates a key pair and returns it in a newly allocatedRSA structure. The pseudo-
random number generator must be seeded prior to callingRSA_generate_key().

The modulus size will benum bits, and the public exponent will bee. Key sizes withnum < 1024
should be considered insecure. The exponent is an odd number, typically 3, 17 or 65537.

A callback function may be used to provide feedback about the progress of the key generation. Ifcall-
back is notNULL , it will be called as follows:

• While a random prime number is generated, it is called as described inBN_generate_prime(3).

• When the n−th randomly generated prime is rejected as not suitable for the key,callback(2, n,
cb_arg) is called.

• When a random p has been found with p−1 relatively prime toe, it is called ascallback(3, 0,
cb_arg).

The process is then repeated for prime q withcallback(3, 1, cb_arg).

RETURN VALUE
If key generation fails,RSA_generate_key()returns NULL ; the error codes can be obtained by
ERR_get_error(3).

BUGS
callback(2, x, cb_arg)is used with two different meanings.

RSA_generate_key()goes into an infinite loop for illegal input values.

SEE ALSO
ERR_get_error(3), rand(3), rsa(3), RSA_free(3)

HISTORY
Thecb_argargument was added in SSLeay 0.9.0.

276 2002-09-25 0.9.7c

RSA_get_ex_new_index(3) OpenSSL RSA_get_ex_new_index(3)

NAME
RSA_get_ex_new_index, RSA_set_ex_data, RSA_get_ex_data − add application specific data to RSA
structures

SYNOPSIS
#include <openssl/rsa.h>

int RSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int RSA_set_ex_data(RSA *r, int idx, void *arg);

void *RSA_get_ex_data(RSA *r, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. This has several
potential uses, it can be used to cache data associated with a structure (for example the hash of some
part of the structure) or some additional data (for example a handle to the data in an external library).

Since the application data can be anything at all it is passed and retrieved as avoid * type.

The RSA_get_ex_new_index() function is initially called to ‘‘register’’ some new application specific
data. It takes three optional function pointers which are called when the parent structure (in this case an
RSA structure) is initially created, when it is copied and when it is freed up. If any or all of these func-
tion pointer arguments are not used they should be set toNULL. The precise manner in which these
function pointers are called is described in more detail below.RSA_get_ex_new_index() also takes
additional long and pointer parameters which will be passed to the supplied functions but which other-
wise have no special meaning. It returns anindex which should be stored (typically in a static variable)
and passed used in theidx parameter in the remaining functions. Each successful call to
RSA_get_ex_new_index() will return an index greater than any previously returned, this is important
because the optional functions are called in order of increasing index value.

RSA_set_ex_data() is used to set application specific data, the data is supplied in thearg parameter and
its precise meaning is up to the application.

RSA_get_ex_data() is used to retrieve application specific data. The data is returned to the application,
this will be the same value as supplied to a previousRSA_set_ex_data() call.

new_func() is called when a structure is initially allocated (for example withRSA_new(). The parent
structure members will not have any meaningful values at this point. This function will typically be
used to allocate any application specific structure.

free_func() is called when a structure is being freed up. The dynamic parent structure members should
not be accessed because they will be freed up when this function is called.

new_func() andfree_func() take the same parameters.parent is a pointer to the parentRSA structure.
ptr is a the application specific data (this wont be of much use innew_func(). ad is a pointer to the
CRYPTO_EX_DAT A structure from the parentRSA structure: the functionsCRYPTO_get_ex_data()
andCRYPTO_set_ex_data() can be called to manipulate it. Theidx parameter is the index: this will be
the same value returned byRSA_get_ex_new_index() when the functions were initially registered.
Finally theargl andargp parameters are the values originally passed to the same corresponding param-
eters whenRSA_get_ex_new_index() was called.

dup_func() is called when a structure is being copied. Pointers to the destination and source
CRYPTO_EX_DAT A structures are passed in theto and from parameters respectively. Thefrom_d
parameter is passed a pointer to the source application data when the function is called, when the func-
tion returns the value is copied to the destination: the application can thus modify the data pointed to by

0.9.7c 2000-09-14 277

RSA_get_ex_new_index(3) OpenSSL RSA_get_ex_new_index(3)

fr om_d and have different values in the source and destination. Theidx, argl andargp parameters are
the same as those innew_func() andfree_func().

RETURN VALUES
RSA_get_ex_new_index() returns a new index or −1 on failure (note 0 is a valid index value).

RSA_set_ex_data() returns 1 on success or 0 on failure.

RSA_get_ex_data() returns the application data or 0 on failure. 0 may also be valid application data but
currently it can only fail if given an inv alididx parameter.

new_func() anddup_func() should return 0 for failure and 1 for success.

On failure an error code can be obtained fromERR_get_error(3).

BUGS
dup_func() is currently never called.

The return value ofnew_func() is ignored.

Thenew_func() function isn’t very useful because no meaningful values are present in the parentRSA
structure when it is called.

SEE ALSO
rsa(3), CRYPTO_set_ex_data(3)

HISTORY
RSA_get_ex_new_index(), RSA_set_ex_data()andRSA_get_ex_data()are available since SSLeay 0.9.0.

278 2000-09-14 0.9.7c

RSA_new(3) OpenSSL RSA_new(3)

NAME
RSA_new, RSA_free − allocate and free RSA objects

SYNOPSIS
#include <openssl/rsa.h>

RSA * RSA_new(void);

void RSA_free(RSA *rsa);

DESCRIPTION
RSA_new() allocates and initializes anRSA structure. It is equivalent to calling
RSA_new_method(NULL).

RSA_free()frees theRSA structure and its components. The key is erased before the memory is
returned to the system.

RETURN VALUES
If the allocation fails,RSA_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

RSA_free()returns no value.

SEE ALSO
ERR_get_error(3), rsa(3), RSA_generate_key(3), RSA_new_method(3)

HISTORY
RSA_new()andRSA_free()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-09-25 279

RSA_padding_add_PKCS1_type_1(3) OpenSSL RSA_padding_add_PKCS1_type_1(3)

NAME
RSA_padding_add_PKCS1_type_1, RSA_padding_check_PKCS1_type_1, RSA_pad-
ding_add_PKCS1_type_2, RSA_padding_check_PKCS1_type_2, RSA_padding_add_PKCS1_OAEP,
RSA_padding_check_PKCS1_OAEP, RSA_padding_add_SSLv23, RSA_padding_check_SSLv23,
RSA_padding_add_none, RSA_padding_check_none − asymmetric encryption padding

SYNOPSIS
#include <openssl/rsa.h>

int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
unsigned char *f, int fl, unsigned char *p, int pl);

int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len, unsigned char *p, int pl);

int RSA_padding_add_SSLv23(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_SSLv23(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_none(unsigned char *to, int tlen,
unsigned char *f, int fl);

int RSA_padding_check_none(unsigned char *to, int tlen,
unsigned char *f, int fl, int rsa_len);

DESCRIPTION
TheRSA_padding_xxx_xxx()functions are called from theRSA encrypt, decrypt, sign and verify func-
tions. Normally they should not be called from application programs.

However, they can also be called directly to implement padding for other asymmetric ciphers.
RSA_padding_add_PKCS1_OAEP()and RSA_padding_check_PKCS1_OAEP()may be used in an
application combined withRSA_NO_PADDING in order to implementOAEPwith an encoding parame-
ter.

RSA_padding_add_xxx()encodesfl bytes fromf so as to fit intotlen bytes and stores the result atto.
An error occurs iffl does not meet the size requirements of the encoding method.

The following encoding methods are implemented:

PKCS1_type_1
PKCS#1 v2.0 EMSA−PKCS1−v1_5 (PKCS#1 v1.5 block type 1); used for signatures

PKCS1_type_2
PKCS#1 v2.0 EME−PKCS1−v1_5 (PKCS#1 v1.5 block type 2)

PKCS1_OAEP
PKCS#1 v2.0 EME-OAEP

SSLv23
PKCS#1 EME−PKCS1−v1_5 with SSL-specific modification

none
simply copy the data

The random number generator must be seeded prior to callingRSA_padding_add_xxx().

280 2000-02-24 0.9.7c

RSA_padding_add_PKCS1_type_1(3) OpenSSL RSA_padding_add_PKCS1_type_1(3)

RSA_padding_check_xxx()verifies that thefl bytes atf contain a valid encoding for arsa_lenbyteRSA
key in the respective encoding method and stores the recovered data of at mosttlen bytes (for
RSA_NO_PADDING: of sizetlen) at to.

For RSA_padding_xxx_OAEP(), p points to the encoding parameter of lengthpl. p may beNULL if pl
is 0.

RETURN VALUES
TheRSA_padding_add_xxx()functions return 1 on success, 0 on error. TheRSA_padding_check_xxx()
functions return the length of the recovered data, −1 on error. Error codes can be obtained by calling
ERR_get_error(3).

SEE ALSO
RSA_public_encrypt(3), RSA_private_decrypt(3), RSA_sign(3), RSA_verify(3)

HISTORY
RSA_padding_add_PKCS1_type_1(), RSA_padding_check_PKCS1_type_1(), RSA_pad-
ding_add_PKCS1_type_2(), RSA_padding_check_PKCS1_type_2(), RSA_padding_add_SSLv23(),
RSA_padding_check_SSLv23(), RSA_padding_add_none()and RSA_padding_check_none()appeared
in SSLeay 0.9.0.

RSA_padding_add_PKCS1_OAEP()and RSA_padding_check_PKCS1_OAEP()were added in
OpenSSL 0.9.2b.

0.9.7c 2000-02-24 281

RSA_print(3) OpenSSL RSA_print(3)

NAME
RSA_print, RSA_print_fp, DSAparams_print, DSAparams_print_fp, DSA_print, DSA_print_fp,
DHparams_print, DHparams_print_fp − print cryptographic parameters

SYNOPSIS
#include <openssl/rsa.h>

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

#include <openssl/dsa.h>

int DSAparams_print(BIO *bp, DSA *x);
int DSAparams_print_fp(FILE *fp, DSA *x);
int DSA_print(BIO *bp, DSA *x, int offset);
int DSA_print_fp(FILE *fp, DSA *x, int offset);

#include <openssl/dh.h>

int DHparams_print(BIO *bp, DH *x);
int DHparams_print_fp(FILE *fp, DH *x);

DESCRIPTION
A human-readable hexadecimal output of the components of theRSA key, DSA parameters or key or
DH parameters is printed tobp or fp.

The output lines are indented byoffsetspaces.

RETURN VALUES
These functions return 1 on success, 0 on error.

SEE ALSO
dh(3), dsa(3), rsa(3), BN_bn2bin(3)

HISTORY
RSA_print(), RSA_print_fp(), DSA_print(),DSA_print_fp(), DH_print(), DH_print_fp()are available in
all versions of SSLeay and OpenSSL.DSAparams_print()andDSAparams_print_pf()were added in
SSLeay 0.8.

282 2002-11-29 0.9.7c

RSA_private_encrypt(3) OpenSSL RSA_private_encrypt(3)

NAME
RSA_private_encrypt, RSA_public_decrypt − low lev el signature operations

SYNOPSIS
#include <openssl/rsa.h>

int RSA_private_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

DESCRIPTION
These functions handleRSA signatures at a low lev el.

RSA_private_encrypt()signs theflen bytes atfrom (usually a message digest with an algorithm identi-
fier) using the private keyrsa and stores the signature into. to must point toRSA_size(rsa)bytes of
memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING
PKCS#1 v1.5 padding. This function does not handle thealgorithmIdentifier specified inPKCS
#1. When generating or verifyingPKCS#1 signatures,RSA_sign(3) andRSA_verify(3) should be
used.

RSA_NO_PADDING
Raw RSA signature. This mode shouldonly be used to implement cryptographically sound pad-
ding modes in the application code. Signing user data directly withRSA is insecure.

RSA_public_decrypt()recovers the message digest from theflen bytes long signature atfrom using the
signer’s public keyrsa. to must point to a memory section large enough to hold the message digest
(which is smaller thanRSA_size(rsa) − 11).padding is the padding mode that was used to sign the
data.

RETURN VALUES
RSA_private_encrypt()returns the size of the signature (i.e., RSA_size(rsa)).RSA_public_decrypt()
returns the size of the recovered message digest.

On error, −1 is returned; the error codes can be obtained byERR_get_error(3).

SEE ALSO
ERR_get_error(3), rsa(3), RSA_sign(3), RSA_verify(3)

HISTORY
Thepadding argument was added in SSLeay 0.8.RSA_NO_PADDINGis available since SSLeay 0.9.0.

0.9.7c 2002-09-25 283

RSA_public_encrypt(3) OpenSSL RSA_public_encrypt(3)

NAME
RSA_public_encrypt, RSA_private_decrypt − RSA public key cryptography

SYNOPSIS
#include <openssl/rsa.h>

int RSA_public_encrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

DESCRIPTION
RSA_public_encrypt()encrypts theflen bytes atfrom (usually a session key) using the public keyrsa
and stores the ciphertext into. to must point to RSA_size(rsa) bytes of memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING
PKCS#1 v1.5 padding. This currently is the most widely used mode.

RSA_PKCS1_OAEP_PADDING
EME-OAEP as defined inPKCS #1 v2.0 withSHA−1, MGF1 and an empty encoding parameter.
This mode is recommended for all new applications.

RSA_SSLV23_PADDING
PKCS#1 v1.5 padding with an SSL-specific modification that denotes that the server isSSL3capa-
ble.

RSA_NO_PADDING
Raw RSA encryption. This mode shouldonly be used to implement cryptographically sound pad-
ding modes in the application code. Encrypting user data directly withRSA is insecure.

flen must be less than RSA_size(rsa) − 11 for thePKCS#1 v1.5 based padding modes, and less than
RSA_size(rsa) − 41 forRSA_PKCS1_OAEP_PADDING. The random number generator must be seeded
prior to callingRSA_public_encrypt().

RSA_private_decrypt()decrypts theflen bytes atfrom using the private keyrsa and stores the plaintext
in to. to must point to a memory section large enough to hold the decrypted data (which is smaller than
RSA_size(rsa)). padding is the padding mode that was used to encrypt the data.

RETURN VALUES
RSA_public_encrypt()returns the size of the encrypted data (i.e., RSA_size(rsa)). RSA_pri-
vate_decrypt()returns the size of the recovered plaintext.

On error, −1 is returned; the error codes can be obtained byERR_get_error(3).

CONFORMING TO
SSL, PKCS#1 v2.0

SEE ALSO
ERR_get_error(3), rand(3), rsa(3), RSA_size(3)

HISTORY
Thepadding argument was added in SSLeay 0.8.RSA_NO_PADDINGis available since SSLeay 0.9.0,
OAEPwas added in OpenSSL 0.9.2b.

284 2002-09-25 0.9.7c

RSA_set_method(3) OpenSSL RSA_set_method(3)

NAME
RSA_set_default_method, RSA_get_default_method, RSA_set_method, RSA_get_method,
RSA_PKCS1_SSLeay, RSA_null_method, RSA_flags, RSA_new_method − select RSA method

SYNOPSIS
#include <openssl/rsa.h>

void RSA_set_default_method(const RSA_METHOD *meth);

RSA_METHOD *RSA_get_default_method(void);

int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);

RSA_METHOD *RSA_get_method(const RSA *rsa);

RSA_METHOD *RSA_PKCS1_SSLeay(void);

RSA_METHOD *RSA_null_method(void);

int RSA_flags(const RSA *rsa);

RSA *RSA_new_method(RSA_METHOD *method);

DESCRIPTION
An RSA_METHOD specifies the functions that OpenSSL uses forRSA operations. By modifying the
method, alternative implementations such as hardware accelerators may be used.IMPORTANT: See the
NOTESsection for important information about how theseRSA API functions are affected by the use of
ENGINE API calls.

Initially, the default RSA_METHOD is the OpenSSL internal implementation, as returned by
RSA_PKCS1_SSLeay().

RSA_set_default_method()makesmeth the default method for allRSA structures created later.NB:
This is true only whilst noENGINE has been set as a default forRSA, so this function is no longer rec-
ommended.

RSA_get_default_method()returns a pointer to the current defaultRSA_METHOD. Howev er, the mean-
ingfulness of this result is dependant on whether theENGINE API is being used, so this function is no
longer recommended.

RSA_set_method()selectsmeth to perform all operations using the keyrsa. This will replace the
RSA_METHODused by theRSA key and if the previous method was supplied by anENGINE, the han-
dle to thatENGINE will be released during the change. It is possible to haveRSA keys that only work
with certainRSA_METHOD implementations (eg. from anENGINE module that supports embedded
hardware-protected keys), and in such cases attempting to change theRSA_METHOD for the key can
have unexpected results.

RSA_get_method()returns a pointer to theRSA_METHODbeing used byrsa. This method may or may
not be supplied by anENGINE implementation, but if it is, the return value can only be guaranteed to be
valid as long as theRSA key itself is valid and does not have its implementation changed by
RSA_set_method().

RSA_flags()returns theflagsthat are set forrsa’s currentRSA_METHOD. See theBUGSsection.

RSA_new_method()allocates and initializes anRSA structure so thatenginewill be used for theRSA
operations. Ifengine is NULL, the defaultENGINE for RSA operations is used, and if no default
ENGINE is set, theRSA_METHODcontrolled byRSA_set_default_method()is used.

RSA_flags()returns theflagsthat are set forrsa’s current method.

RSA_new_method()allocates and initializes anRSA structure so thatmethod will be used for theRSA
operations. Ifmethod is NULL , the default method is used.

THE RSA_METHOD STRUCTURE
typedef struct rsa_meth_st
{

/* name of the implementation */
const char *name;

0.9.7c 2002-09-25 285

RSA_set_method(3) OpenSSL RSA_set_method(3)

/* encrypt */
int (*rsa_pub_enc)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* verify arbitrary data */
int (*rsa_pub_dec)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* sign arbitrary data */
int (*rsa_priv_enc)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* decrypt */
int (*rsa_priv_dec)(int flen, unsigned char *from,

unsigned char *to, RSA *rsa, int padding);

/* compute r0 = r0 ˆ I mod rsa->n (May be NULL for some
implementations) */

int (*rsa_mod_exp)(BIGNUM *r0, BIGNUM *I, RSA *rsa);

/* compute r = a ˆ p mod m (May be NULL for some implementations) */
int (*bn_mod_exp)(BIGNUM *r, BIGNUM *a, const BIGNUM *p,

const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at RSA_new */
int (*init)(RSA *rsa);

/* called at RSA_free */
int (*finish)(RSA *rsa);

/* RSA_FLAG_EXT_PKEY - rsa_mod_exp is called for private key
* o perations, even if p,q,dmp1,dmq1,iqmp
* a re NULL
* RSA_FLAG_SIGN_VER - enable rsa_sign and rsa_verify
* RSA_METHOD_FLAG_NO_CHECK - don’t check pub/private match
*/

int flags;

char *app_data; /* ?? */

/* sign. For backward compatibility, this is used only
* if (flags & RSA_FLAG_SIGN_VER)
*/

int (*rsa_sign)(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

/* verify. For backward compatibility, this is used only
* if (flags & RSA_FLAG_SIGN_VER)
*/

int (*rsa_verify)(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

} RSA_METHOD;

RETURN VALUES
RSA_PKCS1_SSLeay(), RSA_PKCS1_null_method(), RSA_get_default_method() and
RSA_get_method()return pointers to the respective RSA_METHODs.

RSA_set_default_method()returns no value.

RSA_set_method()returns a pointer to the oldRSA_METHODimplementation that was replaced. How-
ev er, this return value should probably be ignored because if it was supplied by anENGINE, the pointer
could be invalidated at any time if theENGINE is unloaded (in fact it could be unloaded as a result of
the RSA_set_method()function releasing its handle to theENGINE). For this reason, the return type
may be replaced with avoid declaration in a future release.

RSA_new_method()returnsNULL and sets an error code that can be obtained byERR_get_error(3) if
the allocation fails. Otherwise it returns a pointer to the newly allocated structure.

286 2002-09-25 0.9.7c

RSA_set_method(3) OpenSSL RSA_set_method(3)

NOTES
As of version 0.9.7,RSA_METHODimplementations are grouped together with other algorithmic APIs
(eg. DSA_METHOD, EVP_CIPHER, etc) intoENGINE modules. If a defaultENGINE is specified for
RSA functionality using anENGINE API function, that will override anyRSA defaults set using theRSA
API (ie. RSA_set_default_method()). For this reason, theENGINE API is the recommended way to con-
trol default implementations for use inRSA and other cryptographic algorithms.

BUGS
The behaviour ofRSA_flags()is a mis-feature that is left as-is for now to avoid creating compatibility
problems.RSA functionality, such as the encryption functions, are controlled by theflags value in the
RSA key itself, not by theflagsvalue in theRSA_METHODattached to theRSA key (which is what this
function returns). If the flags element of anRSA key is changed, the changes will be honoured byRSA
functionality but will not be reflected in the return value of theRSA_flags()function − in effect
RSA_flags()behaves more like anRSA_default_flags()function (which does not currently exist).

SEE ALSO
rsa(3), RSA_new(3)

HISTORY
RSA_new_method() and RSA_set_default_method() appeared in SSLeay 0.8.
RSA_get_default_method(), RSA_set_method()and RSA_get_method()as well as the rsa_sign and
rsa_verify components ofRSA_METHODwere added in OpenSSL 0.9.4.

RSA_set_default_openssl_method() and RSA_get_default_openssl_method() replaced
RSA_set_default_method()and RSA_get_default_method()respectively, andRSA_set_method()and
RSA_new_method()were altered to useENGINEs rather thanRSA_METHODs during development of
the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in theENGINE API was
restructured so that this change was reversed, and behaviour of the other functions resembled more
closely the previous behaviour. The behaviour of defaults in theENGINE API now transparently over-
rides the behaviour of defaults in theRSA APIwithout requiring changing these function prototypes.

0.9.7c 2002-09-25 287

RSA_sign(3) OpenSSL RSA_sign(3)

NAME
RSA_sign, RSA_verify − RSA signatures

SYNOPSIS
#include <openssl/rsa.h>

int RSA_sign(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

DESCRIPTION
RSA_sign()signs the message digestm of sizem_len using the private keyrsa as specified inPKCS#1
v2.0. It stores the signature insigret and the signature size insiglen. sigret must point to
RSA_size(rsa) bytes of memory.

type denotes the message digest algorithm that was used to generatem. It usually is one ofNID_sha1,
NID_ripemd160 andNID_md5; seeobjects(3) for details. Iftype is NID_md5_sha1, anSSL signa-
ture (MD5 andSHA1 message digests withPKCS#1 padding and no algorithm identifier) is created.

RSA_verify()verifies that the signaturesigbuf of sizesiglenmatches a given message digestm of size
m_len. type denotes the message digest algorithm that was used to generate the signature.rsa is the
signer’s public key.

RETURN VALUES
RSA_sign()returns 1 on success, 0 otherwise.RSA_verify()returns 1 on successful verification, 0 oth-
erwise.

The error codes can be obtained byERR_get_error(3).

BUGS
Certain signatures with an improper algorithm identifier are accepted for compatibility with SSLeay
0.4.5 :−)

CONFORMING TO
SSL, PKCS#1 v2.0

SEE ALSO
ERR_get_error(3), objects(3), rsa(3), RSA_private_encrypt(3), RSA_public_decrypt(3)

HISTORY
RSA_sign()andRSA_verify()are available in all versions of SSLeay and OpenSSL.

288 2002-09-25 0.9.7c

RSA_sign_ASN1_OCTET_STRING(3) OpenSSL RSA_sign_ASN1_OCTET_STRING(3)

NAME
RSA_sign_ASN1_OCTET_STRING, RSA_verify_ASN1_OCTET_STRING − RSA signatures

SYNOPSIS
#include <openssl/rsa.h>

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
RSA *rsa);

int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,
unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
RSA *rsa);

DESCRIPTION
RSA_sign_ASN1_OCTET_STRING()signs the octet stringm of sizem_len using the private keyrsa
represented inDER usingPKCS #1 padding. It stores the signature insigret and the signature size in
siglen. sigret must point toRSA_size(rsa)bytes of memory.

dummy is ignored.

The random number generator must be seeded prior to callingRSA_sign_ASN1_OCTET_STRING().

RSA_verify_ASN1_OCTET_STRING()verifies that the signaturesigbuf of sizesiglen is theDER repre-
sentation of a given octet stringm of sizem_len. dummy is ignored.rsa is the signer’s public key.

RETURN VALUES
RSA_sign_ASN1_OCTET_STRING()returns 1 on success, 0 otherwise.RSA_ver-
ify_ASN1_OCTET_STRING()returns 1 on successful verification, 0 otherwise.

The error codes can be obtained byERR_get_error(3).

BUGS
These functions serve no recognizable purpose.

SEE ALSO
ERR_get_error(3), objects(3), rand(3), rsa(3), RSA_sign(3), RSA_verify(3)

HISTORY
RSA_sign_ASN1_OCTET_STRING()andRSA_verify_ASN1_OCTET_STRING()were added in SSLeay
0.8.

0.9.7c 2002-09-25 289

RSA_size(3) OpenSSL RSA_size(3)

NAME
RSA_size − get RSA modulus size

SYNOPSIS
#include <openssl/rsa.h>

int RSA_size(const RSA *rsa);

DESCRIPTION
This function returns theRSA modulus size in bytes. It can be used to determine how much memory
must be allocated for anRSA encrypted value.

rsa−>n must not beNULL .

RETURN VALUE
The size in bytes.

SEE ALSO
rsa(3)

HISTORY
RSA_size()is available in all versions of SSLeay and OpenSSL.

290 2002-08-05 0.9.7c

sha(3) OpenSSL sha(3)

NAME
SHA1, SHA1_Init, SHA1_Update, SHA1_Final − Secure Hash Algorithm

SYNOPSIS
#include <openssl/sha.h>

unsigned char *SHA1(const unsigned char *d, unsigned long n,
unsigned char *md);

void SHA1_Init(SHA_CTX *c);
void SHA1_Update(SHA_CTX *c, const void *data,

unsigned long len);
void SHA1_Final(unsigned char *md, SHA_CTX *c);

DESCRIPTION
SHA−1 (Secure Hash Algorithm) is a cryptographic hash function with a 160 bit output.

SHA1() computes theSHA−1 message digest of then bytes atd and places it inmd (which must have
space forSHA_DIGEST_LENGTH== 20 bytes of output). Ifmd is NULL, the digest is placed in a static
array.

The following functions may be used if the message is not completely stored in memory:

SHA1_Init()initializes aSHA_CTX structure.

SHA1_Update()can be called repeatedly with chunks of the message to be hashed (len bytes atdata).

SHA1_Final()places the message digest inmd, which must have space forSHA_DIGEST_LENGTH==
20 bytes of output, and erases theSHA_CTX.

Applications should use the higher level functionsEVP_DigestInit(3) etc. instead of calling the hash
functions directly.

The predecessor ofSHA−1, SHA, is also implemented, but it should be used only when backward com-
patibility is required.

RETURN VALUES
SHA1() returns a pointer to the hash value.

SHA1_Init(), SHA1_Update()andSHA1_Final()do not return values.

CONFORMING TO
SHA: US Federal Information Processing StandardFIPS PUB180 (Secure Hash Standard),SHA−1: US
Federal Information Processing StandardFIPS PUB180−1 (Secure Hash Standard),ANSI X9.30

SEE ALSO
ripemd(3), hmac(3), EVP_DigestInit(3)

HISTORY
SHA1(), SHA1_Init(), SHA1_Update()and SHA1_Final()are available in all versions of SSLeay and
OpenSSL.

0.9.7c 2000-02-25 291

SMIME_read_PKCS7(3) OpenSSL SMIME_read_PKCS7(3)

NAME
SMIME_read_PKCS7 − parse S/MIME message.

SYNOPSIS
PKCS7*SMIME_read_PKCS7(BIO *in, BIO **bcont);

DESCRIPTION
SMIME_read_PKCS7()parses a message in S/MIME format.

in is aBIO to read the message from.

If cleartext signing is used then the content is saved in a memory bio which is written to*bcont, other-
wise*bcont is set toNULL .

The parsed PKCS#7 structure is returned orNULL if an error occurred.

NOTES
If *bcont is notNULL then the message is clear text signed.*bcont can then be passed toPKCS7_ver-
ify() with thePKCS7_DETACHED flag set.

Otherwise the type of the returned structure can be determined usingPKCS7_type().

To support future functionality ifbcont is notNULL *bcont should be initialized toNULL . For exam-
ple:

BIO *cont = NULL;
PKCS7 *p7;

p7 = SMIME_read_PKCS7(in, &cont);

BUGS
The MIME parser used bySMIME_read_PKCS7()is somewhat primitive. While it will handle most
S/MIME messages more complex compound formats may not work.

The parser assumes that thePKCS7structure is always base64 encoded and will not handle the case
where it is in binary format or uses quoted printable format.

The use of a memoryBIO to hold the signed content limits the size of message which can be processed
due to memory restraints: a streaming single pass option should be available.

RETURN VALUES
SMIME_read_PKCS7()returns a validPKCS7 structure orNULL is an error occurred. The error can be
obtained fromERR_get_error(3).

SEE ALSO
ERR_get_error(3), PKCS7_type(3) SMIME_read_PKCS7(3), PKCS7_sign(3), PKCS7_verify(3),
PKCS7_encrypt(3) PKCS7_decrypt(3)

HISTORY
SMIME_read_PKCS7()was added to OpenSSL 0.9.5

292 2002-10-09 0.9.7c

SMIME_write_PKCS7(3) OpenSSL SMIME_write_PKCS7(3)

NAME
SMIME_write_PKCS7 − convert PKCS#7 structure to S/MIME format.

SYNOPSIS
int SMIME_write_PKCS7(BIO *out, PKCS7*p7, BIO *data, int flags);

DESCRIPTION
SMIME_write_PKCS7()adds the appropriateMIME headers to a PKCS#7 structure to produce an
S/MIME message.

out is theBIO to write the data to.p7 is the appropriatePKCS7 structure. If cleartext signing (multi-
part/signed) is being used then the signed data must be supplied in thedata argument.flags is an
optional set of flags.

NOTES
The following flags can be passed in theflagsparameter.

If PKCS7_DETACHED is set then cleartext signing will be used, this option only makes sense for
signedData wherePKCS7_DETACHED is also set whenPKCS7_sign()is also called.

If the PKCS7_TEXT flag is setMIME headers for typetext/plain are added to the content, this only
makes sense ifPKCS7_DETACHED is also set.

If cleartext signing is being used then the data must be read twice: once to compute the signature in
PKCS7_sign()and once to output the S/MIME message.

BUGS
SMIME_write_PKCS7()always base64 encodes PKCS#7 structures, there should be an option to dis-
able this.

There should really be a way to produce cleartext signing using only a single pass of the data.

RETURN VALUES
SMIME_write_PKCS7()returns 1 for success or 0 for failure.

SEE ALSO
ERR_get_error(3), PKCS7_sign(3), PKCS7_verify(3), PKCS7_encrypt(3) PKCS7_decrypt(3)

HISTORY
SMIME_write_PKCS7()was added to OpenSSL 0.9.5

0.9.7c 2002-10-19 293

SSL_accept(3) OpenSSL SSL_accept(3)

NAME
SSL_accept − wait for a TLS/SSL client to initiate a TLS/SSL handshake

SYNOPSIS
#include <openssl/ssl.h>

int SSL_accept(SSL *ssl);

DESCRIPTION
SSL_accept()waits for aTLS/SSLclient to initiate theTLS/SSLhandshake. The communication chan-
nel must already have been set and assigned to thesslby setting an underlyingBIO .

NOTES
The behaviour ofSSL_accept()depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_accept()will only return once the handshake has been finished
or an error occurred, except forSGC(Server Gated Cryptography). ForSGC, SSL_accept()may return
with −1, butSSL_get_error()will yield SSL_ERROR_WANT_READ/WRITE andSSL_accept()should
be called again.

If the underlyingBIO is non-blocking, SSL_accept()will also return when the underlyingBIO could
not satisfy the needs ofSSL_accept()to continue the handshake, indicating the problem by the return
value −1. In this case a call toSSL_get_error()with the return value ofSSL_accept()will yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then must repeat the
call after taking appropriate action to satisfy the needs ofSSL_accept(). The action depends on the
underlyingBIO. When using a non-blocking socket, nothing is to be done, butselect()can be used to
check for the required condition. When using a bufferingBIO, like aBIO pair, data must be written into
or retrieved out of theBIO before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, aTLS/SSLconnection has been established.

• TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications
of theTLS/SSLprotocol. CallSSL_get_error()with the return valueret to find out the reason.

<0 TheTLS/SSL handshake was not successful because a fatal error occurred either at the protocol
level or a connection failure occurred. The shutdown was not clean. It can also occur of action is
need to continue the operation for non-blocking BIOs. CallSSL_get_error()with the return value
ret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_connect(3), SSL_shutdown(3), ssl(3), bio (3), SSL_set_connect_state(3),
SSL_do_handshake(3), SSL_CTX_new(3)

294 2003-06-03 0.9.7c

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

NAME
SSL_alert_type_string, SSL_alert_type_string_long, SSL_alert_desc_string,
SSL_alert_desc_string_long − get textual description of alert information

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_alert_type_string(int value);
const char *SSL_alert_type_string_long(int value);

const char *SSL_alert_desc_string(int value);
const char *SSL_alert_desc_string_long(int value);

DESCRIPTION
SSL_alert_type_string()returns a one letter string indicating the type of the alert specified byvalue.

SSL_alert_type_string_long()returns a string indicating the type of the alert specified byvalue.

SSL_alert_desc_string()returns a two letter string as a short form describing the reason of the alert
specified byvalue.

SSL_alert_desc_string_long()returns a string describing the reason of the alert specified byvalue.

NOTES
When one side of anSSL/TLS communication wants to inform the peer about a special situation, it
sends an alert. The alert is sent as a special message and does not influence the normal data stream
(unless its contents results in the communication being canceled).

A warning alert is sent, when a non-fatal error condition occurs. The ‘‘close notify’’ alert is sent as a
warning alert. Other examples for non-fatal errors are certificate errors (‘‘certificate expired’’, ‘‘unsup-
ported certificate’’), for which a warning alert may be sent. (The sending party may however decide to
send a fatal error.) The receiving side may cancel the connection on reception of a warning alert on it
discretion.

Several alert messages must be sent as fatal alert messages as specified by theTLS RFC. A fatal alert
always leads to a connection abort.

RETURN VALUES
The following strings can occur forSSL_alert_type_string()or SSL_alert_type_string_long():

‘‘W’’/‘‘warning’’
‘‘F’’/‘‘fatal’’
‘‘U’’/‘‘unknown’’

This indicates that no support is available for this alert type. Probablyvalue does not contain a
correct alert message.

The following strings can occur forSSL_alert_desc_string()or SSL_alert_desc_string_long():

‘‘ CN’’/‘‘close notify’’
The connection shall be closed. This is a warning alert.

‘‘ UM’’/‘‘unexpected message’’
An inappropriate message was received. This alert is always fatal and should never be observed in
communication between proper implementations.

‘‘ BM’’/‘‘bad record mac’’
This alert is returned if a record is received with an incorrectMAC. This message is always fatal.

‘‘ DF’’/‘‘decompression failure’’
The decompression function received improper input (e.g. data that would expand to excessive
length). This message is always fatal.

‘‘ HF’’/‘‘handshake failure’’
Reception of a handshake_failure alert message indicates that the sender was unable to negotiate
an acceptable set of security parameters given the options available. This is a fatal error.

‘‘ NC’’/‘‘no certificate’’
A client, that was asked to send a certificate, does not send a certificate (SSLv3 only).

0.9.7c 2001-09-07 295

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

‘‘ BC’’ /‘‘bad certificate’’
A certificate was corrupt, contained signatures that did not verify correctly, etc

‘‘ UC’’/‘‘unsupported certificate’’
A certificate was of an unsupported type.

‘‘ CR’’/‘‘certificate revoked’’
A certificate was revoked by its signer.

‘‘ CE’’/‘‘certificate expired’’
A certificate has expired or is not currently valid.

‘‘ CU’’/‘‘certificate unknown’’
Some other (unspecified) issue arose in processing the certificate, rendering it unacceptable.

‘‘ IP’’/‘‘illegal parameter’’
A field in the handshake was out of range or inconsistent with other fields. This is always fatal.

‘‘ DC’’/‘‘decryption failed’’
A TLSCiphertext decrypted in an invalid way: either it wasn’t an even multiple of the block length
or its padding values, when checked, weren’t correct. This message is always fatal.

‘‘ RO’’/‘‘record overflow’’
A TLSCiphertext record was received which had a length more than 2ˆ14+2048 bytes, or a record
decrypted to a TLSCompressed record with more than 2ˆ14+1024 bytes. This message is always
fatal.

‘‘ CA’’/‘‘unknown CA’’
A valid certificate chain or partial chain was received, but the certificate was not accepted because
the CA certificate could not be located or couldn’t be matched with a known, trustedCA. This
message is always fatal.

‘‘ AD’’/‘‘access denied’’
A valid certificate was received, but when access control was applied, the sender decided not to
proceed with negotiation. This message is always fatal.

‘‘ DE’’/‘‘decode error’’
A message could not be decoded because some field was out of the specified range or the length of
the message was incorrect. This message is always fatal.

‘‘ CY’’/‘‘decrypt error’’
A handshake cryptographic operation failed, including being unable to correctly verify a signature,
decrypt a key exchange, or validate a finished message.

‘‘ ER’’/‘‘export restriction’’
A negotiation not in compliance with export restrictions was detected; for example, attempting to
transfer a 1024 bit ephemeralRSA key for theRSA_EXPORThandshake method. This message is
always fatal.

‘‘ PV’’/‘‘protocol version’’
The protocol version the client has attempted to negotiate is recognized, but not supported. (For
example, old protocol versions might be avoided for security reasons). This message is always
fatal.

‘‘ IS’’/‘‘insufficient security’’
Returned instead of handshake_failure when a negotiation has failed specifically because the
server requires ciphers more secure than those supported by the client. This message is always
fatal.

‘‘ IE’’/‘‘internal error’’
An internal error unrelated to the peer or the correctness of the protocol makes it impossible to
continue (such as a memory allocation failure). This message is always fatal.

‘‘ US’’/‘‘user canceled’’
This handshake is being canceled for some reason unrelated to a protocol failure. If the user can-
cels an operation after the handshake is complete, just closing the connection by sending a
close_notify is more appropriate. This alert should be followed by a close_notify. This message is
generally a warning.

296 2001-09-07 0.9.7c

SSL_alert_type_string(3) OpenSSL SSL_alert_type_string(3)

‘‘ NR’’ /‘‘no renegotiation’’
Sent by the client in response to a hello request or by the server in response to a client hello after
initial handshaking. Either of these would normally lead to renegotiation; when that is not appro-
priate, the recipient should respond with this alert; at that point, the original requester can decide
whether to proceed with the connection. One case where this would be appropriate would be
where a server has spawned a process to satisfy a request; the process might receive security
parameters (key length, authentication, etc.) at startup and it might be difficult to communicate
changes to these parameters after that point. This message is always a warning.

‘‘ UK’’/‘‘unknown’’
This indicates that no description is available for this alert type. Probablyvaluedoes not contain a
correct alert message.

SEE ALSO
ssl(3), SSL_CTX_set_info_callback(3)

0.9.7c 2001-09-07 297

SSL_CIPHER_get_name(3) OpenSSL SSL_CIPHER_get_name(3)

NAME
SSL_CIPHER_get_name, SSL_CIPHER_get_bits, SSL_CIPHER_get_version,
SSL_CIPHER_description − get SSL_CIPHER properties

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_CIPHER_get_name(SSL_CIPHER *cipher);
int SSL_CIPHER_get_bits(SSL_CIPHER *cipher, int *alg_bits);
char *SSL_CIPHER_get_version(SSL_CIPHER *cipher);
char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int size);

DESCRIPTION
SSL_CIPHER_get_name()returns a pointer to the name ofcipher. If the argument is theNULL pointer,
a pointer to the constant value ‘‘NONE’’ is returned.

SSL_CIPHER_get_bits()returns the number of secret bits used forcipher. If alg_bits is notNULL, it
contains the number of bits processed by the chosen algorithm. Ifcipher is NULL, 0 is returned.

SSL_CIPHER_get_version()returns the protocol version forcipher, currently ‘‘SSLv2’’, ‘‘SSLv3’’, or
‘‘TLSv1’’. If cipher is NULL, ‘‘(NONE)’’ is returned.

SSL_CIPHER_description()returns a textual description of the cipher used into the bufferbuf of length
len provided.len must be at least 128 bytes, otherwise a pointer to the the string ‘‘Buffer too small’’ is
returned. Ifbuf is NULL, a buffer of 128 bytes is allocated usingOPENSSL_malloc(). If the allocation
fails, a pointer to the string ‘‘OPENSSL_malloc Error’’ is returned.

NOTES
The number of bits processed can be different from the secret bits. An export cipher like e.g.
EXP−RC4−MD5 has only 40 secret bits. The algorithm does use the full 128 bits (which would be
returned foralg_bits), of which however 88bits are fixed. The search space is hence only 40 bits.

The string returned bySSL_CIPHER_description()in case of success consists of cleartext information
separated by one or more blanks in the following sequence:

<ciphername>
Te xtual representation of the cipher name.

<protocol version>
Protocol version:SSLv2,SSLv3. The TLSv1 ciphers are flagged with SSLv3.

Kx=<key exchange>
Ke y exchange method:RSA (for export ciphers asRSA(512) or RSA(1024)), DH (for export
ciphers asDH(512)or DH(1024)),DH/RSA, DH/DSS, Fortezza.

Au=<authentication>
Authentication method:RSA, DSS, DH, None. None is the representation of anonymous ciphers.

Enc=<symmetric encryption method>
Encryption method with number of secret bits:DES(40),DES(56),3DES(168), RC4(40),RC4(56),
RC4(64),RC4(128),RC2(40),RC2(56), RC2(128), IDEA (128),Fortezza,None.

Mac=<message authentication code>
Message digest:MD5, SHA1.

<export flag>
If the cipher is flagged exportable with respect to oldUS crypto regulations, the word "export" is
printed.

EXAMPLES
Some examples for the output ofSSL_CIPHER_description():

EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

298 2001-02-16 0.9.7c

SSL_CIPHER_get_name(3) OpenSSL SSL_CIPHER_get_name(3)

BUGS
If SSL_CIPHER_description()is called withcipher beingNULL, the library crashes.

If SSL_CIPHER_description()cannot handle a built-in cipher, the according description of the cipher
property isunknown. This case should not occur.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_get_current_cipher(3), SSL_get_ciphers(3), ciphers(1)

0.9.7c 2001-02-16 299

SSL_clear(3) OpenSSL SSL_clear(3)

NAME
SSL_clear − reset SSL object to allow another connection

SYNOPSIS
#include <openssl/ssl.h>

int SSL_clear(SSL *ssl);

DESCRIPTION
Resetsslto allow another connection. All settings (method, ciphers, BIOs) are kept.

NOTES
SSL_clear is used to prepare anSSL object for a new connection. While all settings are kept, a side
effect is the handling of the currentSSLsession. If a session is stillopen, it is considered bad and will
be removed from the session cache, as required byRFC2246. A session is considered open, ifSSL_shut-
down(3) was not called for the connection or at leastSSL_set_shutdown(3) was used to set the
SSL_SENT_SHUTDOWNstate.

If a session was closed cleanly, the session object will be kept and all settings corresponding. This
explicitly means, that e.g. the special method used during the session will be kept for the next hand-
shake. So if the session was a TLSv1 session, aSSL client object will use a TLSv1 client method for
the next handshake and aSSL server object will use a TLSv1 server method, even if SSLv23_*_meth-
ods were chosen on startup. This will might lead to connection failures (seeSSL_new(3)) for a descrip-
tion of the method’s properties.

WARNINGS
SSL_clear()resets theSSL object to allow for another connection. The reset operation however keeps
several settings of the last sessions (some of these settings were made automatically during the last
handshake). It only makes sense when opening a new session (or reusing an old one) with the same
peer that shares these settings.SSL_clear()is not a short form for the sequenceSSL_free(3);
SSL_new(3); .

RETURN VALUES
The following return values can occur:

• TheSSL_clear()operation could not be performed. Check the error stack to find out the reason.

1 TheSSL_clear()operation was successful.

SSL_new(3), SSL_free(3), SSL_shutdown(3), SSL_set_shutdown(3), SSL_CTX_set_options(3), ssl(3),
SSL_CTX_set_client_cert_cb(3)

300 2002-02-27 0.9.7c

SSL_COMP_add_compression_method(3) OpenSSL SSL_COMP_add_compression_method(3)

NAME
SSL_COMP_add_compression_method − handle SSL/TLS integrated compression methods

SYNOPSIS
#include <openssl/ssl.h>

int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm);

DESCRIPTION
SSL_COMP_add_compression_method()adds the compression methodcm with the identifierid to the
list of available compression methods. This list is globally maintained for allSSLoperations within this
application. It cannot be set for specificSSL_CTXor SSLobjects.

NOTES
The TLS standard (or SSLv3) allows the integration of compression methods into the communication.
The TLS RFC does however not specify compression methods or their corresponding identifiers, so
there is currently no compatible way to integrate compression with unknown peers. It is therefore cur-
rently not recommended to integrate compression into applications. Applications for non-public use
may agree on certain compression methods. Using different compression methods with the same identi-
fier will lead to connection failure.

An OpenSSL client speaking a protocol that allows compression (SSLv3, TLSv1) will unconditionally
send the list of all compression methods enabled withSSL_COMP_add_compression_method()to the
server during the handshake. Unlike the mechanisms to set a cipher list, there is no method available to
restrict the list of compression method on a per connection basis.

An OpenSSL server will match the identifiers listed by a client against its own compression methods
and will unconditionally activate compression when a matching identifier is found. There is no way to
restrict the list of compression methods supported on a per connection basis.

The OpenSSL library has the compression methodsCOMP_rle() and (when especially enabled during
compilation)COMP_zlib() available.

WARNINGS
Once the identities of the compression methods for theTLS protocol have been standardized, the com-
pressionAPI will most likely be changed. Using it in the current state is not recommended.

RETURN VALUES
SSL_COMP_add_compression_method()may return the following values:

1 The operation succeeded.

• The operation failed. Check the error queue to find out the reason.

SEE ALSO
ssl(3)

0.9.7c 2001-08-23 301

SSL_connect(3) OpenSSL SSL_connect(3)

NAME
SSL_connect − initiate the TLS/SSL handshake with an TLS/SSL server

SYNOPSIS
#include <openssl/ssl.h>

int SSL_connect(SSL *ssl);

DESCRIPTION
SSL_connect()initiates theTLS/SSLhandshake with a server. The communication channel must already
have been set and assigned to thesslby setting an underlyingBIO .

NOTES
The behaviour ofSSL_connect()depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_connect()will only return once the handshake has been finished
or an error occurred.

If the underlyingBIO is non-blocking, SSL_connect()will also return when the underlyingBIO could
not satisfy the needs ofSSL_connect()to continue the handshake, indicating the problem by the return
value −1. In this case a call toSSL_get_error()with the return value ofSSL_connect()will yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then must repeat the
call after taking appropriate action to satisfy the needs ofSSL_connect(). The action depends on the
underlyingBIO. When using a non-blocking socket, nothing is to be done, butselect()can be used to
check for the required condition. When using a bufferingBIO, like aBIO pair, data must be written into
or retrieved out of theBIO before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, aTLS/SSLconnection has been established.

• TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications
of theTLS/SSLprotocol. CallSSL_get_error()with the return valueret to find out the reason.

<0 TheTLS/SSL handshake was not successful, because a fatal error occurred either at the protocol
level or a connection failure occurred. The shutdown was not clean. It can also occur of action is
need to continue the operation for non-blocking BIOs. CallSSL_get_error()with the return value
ret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_accept(3), SSL_shutdown(3), ssl(3), bio (3), SSL_set_connect_state(3),
SSL_do_handshake(3), SSL_CTX_new(3)

302 2003-06-03 0.9.7c

SSL_CTX_add_extra_chain_cert(3) OpenSSL SSL_CTX_add_extra_chain_cert(3)

NAME
SSL_CTX_add_extra_chain_cert − add certificate to chain

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_add_extra_chain_cert(SSL_CTX ctx, X509 *x509)

DESCRIPTION
SSL_CTX_add_extra_chain_cert()adds the certificatex509 to the certificate chain presented together
with the certificate. Several certificates can be added one after the other.

NOTES
When constructing the certificate chain, the chain will be formed from these certificates explicitly spec-
ified. If no chain is specified, the library will try to complete the chain from the availableCA certifi-
cates in the trustedCA storage, seeSSL_CTX_load_verify_locations(3).

RETURN VALUES
SSL_CTX_add_extra_chain_cert()returns 1 on success. Check out the error stack to find out the reason
for failure otherwise.

SEE ALSO
ssl(3), SSL_CTX_use_certificate(3), SSL_CTX_set_client_cert_cb(3), SSL_CTX_load_verify_loca-
tions(3)

0.9.7c 2002-02-15 303

SSL_CTX_add_session(3) OpenSSL SSL_CTX_add_session(3)

NAME
SSL_CTX_add_session, SSL_add_session, SSL_CTX_remove_session, SSL_remove_session −
manipulate session cache

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_add_session(SSL_CTX *ctx, SSL_SESSION *c);

int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_remove_session(SSL_CTX *ctx, SSL_SESSION *c);

DESCRIPTION
SSL_CTX_add_session()adds the sessionc to the contextctx. The reference count for sessionc is
incremented by 1. If a session with the same session id already exists, the old session is removed by
callingSSL_SESSION_free(3).

SSL_CTX_remove_session()removes the sessionc from the contextctx. SSL_SESSION_free(3) is
called once forc.

SSL_add_session()andSSL_remove_session()are synonyms for their SSL_CTX_*() counterparts.

NOTES
When adding a new session to the internal session cache, it is examined whether a session with the
same session id already exists. In this case it is assumed that both sessions are identical. If the same
session is stored in a differentSSL_SESSIONobject, The old session is removed and replaced by the
new session. If the session is actually identical (theSSL_SESSION object is identical),
SSL_CTX_add_session()is a no−op, and the return value is 0.

If a serverSSL_CTX is configured with theSSL_SESS_CACHE_NO_INTERNAL_STOREflag then the
internal cache will not be populated automatically by new sessions negotiated by theSSL/TLS imple-
mentation, even though the internal cache will be searched automatically for session-resume requests
(the latter can be surpressed bySSL_SESS_CACHE_NO_INTERNAL_LOOKUP). So the application can
use SSL_CTX_add_session()directly to have full control over the sessions that can be resumed if
desired.

RETURN VALUES
The following values are returned by all functions:

•
The operation failed. In case of the add operation, it was tried to add
the same (identical) session twice. In case of the remove operation, the
session was not found in the cache.

1
The operation succeeded.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_free(3)

304 2002-10-29 0.9.7c

SSL_CTX_ctrl(3) OpenSSL SSL_CTX_ctrl(3)

NAME
SSL_CTX_ctrl, SSL_CTX_callback_ctrl, SSL_ctrl, SSL_callback_ctrl − internal handling functions
for SSL_CTX and SSL objects

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg);
long SSL_CTX_callback_ctrl(SSL_CTX *, int cmd, void (*fp)());

long SSL_ctrl(SSL *ssl, int cmd, long larg, void *parg);
long SSL_callback_ctrl(SSL *, int cmd, void (*fp)());

DESCRIPTION
The SSL_*_ctrl() family of functions is used to manipulate settings of theSSL_CTXandSSL objects.
Depending on the commandcmd the argumentslarg, parg, or fp are evaluated. These functions should
never be called directly. All functionalities needed are made available via other functions or macros.

RETURN VALUES
The return values of the SSL*_ctrl() functions depend on the command supplied via thecmd parame-
ter.

SEE ALSO
ssl(3)

0.9.7c 2001-10-20 305

SSL_CTX_flush_sessions(3) OpenSSL SSL_CTX_flush_sessions(3)

NAME
SSL_CTX_flush_sessions, SSL_flush_sessions − remove expired sessions

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_flush_sessions(SSL_CTX *ctx, long tm);
void SSL_flush_sessions(SSL_CTX *ctx, long tm);

DESCRIPTION
SSL_CTX_flush_sessions()causes a run through the session cache ofctx to remove sessions expired at
time tm.

SSL_flush_sessions()is a synonym forSSL_CTX_flush_sessions().

NOTES
If enabled, the internal session cache will collect all sessions established up to the specified maximum
number (seeSSL_CTX_sess_set_cache_size()). As sessions will not be reused ones they are expired,
they should be removed from the cache to save resources. This can either be done
automatically whenever 255 new sessions were established (seeSSL_CTX_set_ses-
sion_cache_mode(3)) or manually by callingSSL_CTX_flush_sessions().

The parametertm specifies the time which should be used for the expiration test, in most cases the
actual time given bytime(0) will be used.

SSL_CTX_flush_sessions()will only check sessions stored in the internal cache. When a session is
found and removed, the remove_session_cb is however called to synchronize with the external cache
(seeSSL_CTX_sess_set_get_cb(3)).

RETURN VALUES
SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_set_timeout(3),
SSL_CTX_sess_set_get_cb(3)

306 2001-02-04 0.9.7c

SSL_CTX_free(3) OpenSSL SSL_CTX_free(3)

NAME
SSL_CTX_free − free an allocated SSL_CTX object

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_free(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_free()decrements the reference count ofctx, and removes theSSL_CTXobject pointed to by
ctx and frees up the allocated memory if the the reference count has reached 0.

It also calls thefree()ing procedures for indirectly affected items, if applicable: the session cache, the
list of ciphers, the list of Client CAs, the certificates and keys.

WARNINGS
If a session-remove callback is set (SSL_CTX_sess_set_remove_cb()), this callback will be called for
each session being freed fromctx’s session cache. This implies, that all corresponding sessions from an
external session cache are removed as well. If this is not desired, the user should explicitly unset the
callback by calling SSL_CTX_sess_set_remove_cb(ctx, NULL) prior to callingSSL_CTX_free().

RETURN VALUES
SSL_CTX_free()does not provide diagnostic information.

SEE ALSO
SSL_CTX_new (3), ssl(3), SSL_CTX_sess_set_get_cb(3)

0.9.7c 2003-03-27 307

SSL_CTX_get_ex_new_index(3) OpenSSL SSL_CTX_get_ex_new_index(3)

NAME
SSL_CTX_get_ex_new_index, SSL_CTX_set_ex_data, SSL_CTX_get_ex_data − internal application
specific data functions

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg);

void *SSL_CTX_get_ex_data(SSL_CTX *ctx, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_CTX_get_ex_new_index()is used to register a new index for application specific data.

SSL_CTX_set_ex_data()is used to store application data atarg for idx into thectx object.

SSL_CTX_get_ex_data()is used to retrieve the information foridx from ctx.

A detailed description for the *_get_ex_new_index() functionality can be found in
RSA_get_ex_new_index(3). The *_get_ex_data() and *_set_ex_data() functionality is described in
CRYPTO_set_ex_data(3).

SEE ALSO
ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3)

308 2001-05-14 0.9.7c

SSL_CTX_get_verify_mode(3) OpenSSL SSL_CTX_get_verify_mode(3)

NAME
SSL_CTX_get_verify_mode, SSL_get_verify_mode, SSL_CTX_get_verify_depth, SSL_get_ver-
ify_depth, SSL_get_verify_callback, SSL_CTX_get_verify_callback − get currently set verification
parameters

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_get_verify_mode(SSL_CTX *ctx);
int SSL_get_verify_mode(SSL *ssl);
int SSL_CTX_get_verify_depth(SSL_CTX *ctx);
int SSL_get_verify_depth(SSL *ssl);
int (*SSL_CTX_get_verify_callback(SSL_CTX *ctx))(int, X509_STORE_CTX *);
int (*SSL_get_verify_callback(SSL *ssl))(int, X509_STORE_CTX *);

DESCRIPTION
SSL_CTX_get_verify_mode()returns the verification mode currently set inctx.

SSL_get_verify_mode()returns the verification mode currently set inssl.

SSL_CTX_get_verify_depth()returns the verification depth limit currently set inctx. If no limit has
been explicitly set, −1 is returned and the default value will be used.

SSL_get_verify_depth()returns the verification depth limit currently set inssl. If no limit has been
explicitly set, −1 is returned and the default value will be used.

SSL_CTX_get_verify_callback()returns a function pointer to the verification callback currently set in
ctx. If no callback was explicitly set, theNULL pointer is returned and the default callback will be used.

SSL_get_verify_callback()returns a function pointer to the verification callback currently set inssl. If
no callback was explicitly set, theNULL pointer is returned and the default callback will be used.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_CTX_set_verify(3)

0.9.7c 2000-10-12 309

SSL_CTX_load_verify_locations(3) OpenSSL SSL_CTX_load_verify_locations(3)

NAME
SSL_CTX_load_verify_locations − set default locations for trusted CA certificates

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath);

DESCRIPTION
SSL_CTX_load_verify_locations()specifies the locations forctx, at whichCA certificates for verifica-
tion purposes are located. The certificates available viaCAfile andCApath are trusted.

NOTES
If CAfile is notNULL, it points to a file ofCA certificates inPEM format. The file can contain several
CA certificates identified by

-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descrip-
tions of the certificates.

TheCAfile is processed on execution of theSSL_CTX_load_verify_locations()function.

If CApath is notNULL, it points to a directory containingCA certificates inPEM format. The files each
contain oneCA certificate. The files are looked up by theCA subject name hash value, which must
hence be available. If more than oneCA certificate with the same name hash value exist, the extension
must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). The search is performed in the ordering of the
extension number, reg ardless of other properties of the certificates. Use thec_rehashutility to create
the necessary links.

The certificates inCApath are only looked up when required, e.g. when building the certificate chain
or when actually performing the verification of a peer certificate.

When looking upCA certificates, the OpenSSL library will first search the certificates inCAfile, then
those inCApath. Certificate matching is done based on the subject name, the key identifier (if present),
and the serial number as taken from the certificate to be verified. If these data do not match, the next
certificate will be tried. If a first certificate matching the parameters is found, the verification process
will be performed; no other certificates for the same parameters will be searched in case of failure.

In server mode, when requesting a client certificate, the server must send the list of CAs of which it
will accept client certificates. This list is not influenced by the contents ofCAfile or CApath and must
explicitly be set using theSSL_CTX_set_client_CA_list(3) family of functions.

When building its own certificate chain, an OpenSSL client/server will try to fill in missing certificates
from CAfile/CApath, if the certificate chain was not explicitly specified (see
SSL_CTX_add_extra_chain_cert(3), SSL_CTX_use_certificate(3).

WARNINGS
If severalCA certificates matching the name, key identifier, and serial number condition are available,
only the first one will be examined. This may lead to unexpected results if the sameCA certificate is
available with different expiration dates. If a ‘‘certificate expired’’ verification error occurs, no other
certificate will be searched. Make sure to not have expired certificates mixed with valid ones.

EXAMPLES
Generate aCA certificate file with descriptive text from theCA certificates ca1.pem ca2.pem ca3.pem:

#!/bin/sh
rm CAfile.pem
for i in ca1.pem ca2.pem ca3.pem ; do

openssl x509 -in $i -text >> CAfile.pem
done

Prepare the directory /some/where/certs containing severalCA certificates for use asCApath:

310 2001-09-07 0.9.7c

SSL_CTX_load_verify_locations(3) OpenSSL SSL_CTX_load_verify_locations(3)

cd /some/where/certs
c_rehash .

RETURN VALUES
The following return values can occur:

• The operation failed becauseCAfile andCApath areNULL or the processing at one of the loca-
tions specified failed. Check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_list(3), SSL_get_client_CA_list(3), SSL_CTX_use_certificate(3),
SSL_CTX_add_extra_chain_cert(3), SSL_CTX_set_cert_store(3)

0.9.7c 2001-09-07 311

SSL_CTX_new(3) OpenSSL SSL_CTX_new(3)

NAME
SSL_CTX_new − create a new SSL_CTX object as framework for TLS/SSL enabled functions

SYNOPSIS
#include <openssl/ssl.h>

SSL_CTX *SSL_CTX_new(SSL_METHOD *method);

DESCRIPTION
SSL_CTX_new()creates a newSSL_CTX object as framework to establishTLS/SSL enabled connec-
tions.

NOTES
The SSL_CTX object usesmethod as connection method. The methods exist in a generic type (for
client and server use), a server only type, and a client only type.methodcan be of the following types:

SSLv2_method(void), SSLv2_server_method(void), SSLv2_client_method(void)
A TLS/SSLconnection established with these methods will only understand the SSLv2 protocol. A
client will send out SSLv2 client hello messages and will also indicate that it only understand
SSLv2. A server will only understand SSLv2 client hello messages.

SSLv3_method(void), SSLv3_server_method(void), SSLv3_client_method(void)
A TLS/SSLconnection established with these methods will only understand the SSLv3 protocol. A
client will send out SSLv3 client hello messages and will indicate that it only understands SSLv3.
A server will only understand SSLv3 client hello messages. This especially means, that it will not
understand SSLv2 client hello messages which are widely used for compatibility reasons, see
SSLv23_*_method().

TLSv1_method(void), TLSv1_server_method(void), TLSv1_client_method(void)
A TLS/SSLconnection established with these methods will only understand the TLSv1 protocol. A
client will send out TLSv1 client hello messages and will indicate that it only understands TLSv1.
A server will only understand TLSv1 client hello messages. This especially means, that it will not
understand SSLv2 client hello messages which are widely used for compatibility reasons, see
SSLv23_*_method(). It will also not understand SSLv3 client hello messages.

SSLv23_method(void), SSLv23_server_method(void), SSLv23_client_method(void)
A TLS/SSL connection established with these methods will understand the SSLv2, SSLv3, and
TLSv1 protocol. A client will send out SSLv2 client hello messages and will indicate that it also
understands SSLv3 and TLSv1. A server will understand SSLv2, SSLv3, and TLSv1 client hello
messages. This is the best choice when compatibility is a concern.

The list of protocols available can later be limited using the SSL_OP_NO_SSLv2,
SSL_OP_NO_SSLv3, SSL_OP_NO_TLSv1 options of theSSL_CTX_set_options() or
SSL_set_options() functions. Using these options it is possible to choose e.g.SSLv23_server_method()
and be able to negotiate with all possible clients, but to only allow newer protocols like SSLv3 or
TLSv1.

SSL_CTX_new()initializes the list of ciphers, the session cache setting, the callbacks, the keys and cer-
tificates, and the options to its default values.

RETURN VALUES
The following return values can occur:

NULL
The creation of a newSSL_CTXobject failed. Check the error stack to find out the reason.

Pointer to anSSL_CTXobject
The return value points to an allocatedSSL_CTXobject.

SEE ALSO
SSL_CTX_free(3), SSL_accept(3), ssl(3), SSL_set_connect_state(3)

312 2001-07-25 0.9.7c

SSL_CTX_sess_number(3) OpenSSL SSL_CTX_sess_number(3)

NAME
SSL_CTX_sess_number, SSL_CTX_sess_connect, SSL_CTX_sess_connect_good,
SSL_CTX_sess_connect_renegotiate, SSL_CTX_sess_accept, SSL_CTX_sess_accept_good,
SSL_CTX_sess_accept_renegotiate, SSL_CTX_sess_hits, SSL_CTX_sess_cb_hits,
SSL_CTX_sess_misses, SSL_CTX_sess_timeouts, SSL_CTX_sess_cache_full − obtain session cache
statistics

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_sess_number(SSL_CTX *ctx);
long SSL_CTX_sess_connect(SSL_CTX *ctx);
long SSL_CTX_sess_connect_good(SSL_CTX *ctx);
long SSL_CTX_sess_connect_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_accept(SSL_CTX *ctx);
long SSL_CTX_sess_accept_good(SSL_CTX *ctx);
long SSL_CTX_sess_accept_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_hits(SSL_CTX *ctx);
long SSL_CTX_sess_cb_hits(SSL_CTX *ctx);
long SSL_CTX_sess_misses(SSL_CTX *ctx);
long SSL_CTX_sess_timeouts(SSL_CTX *ctx);
long SSL_CTX_sess_cache_full(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sess_number()returns the current number of sessions in the internal session cache.

SSL_CTX_sess_connect()returns the number of startedSSL/TLShandshakes in client mode.

SSL_CTX_sess_connect_good()returns the number of successfully establishedSSL/TLS sessions in
client mode.

SSL_CTX_sess_connect_renegotiate()returns the number of start renegotiations in client mode.

SSL_CTX_sess_accept()returns the number of startedSSL/TLShandshakes in server mode.

SSL_CTX_sess_accept_good()returns the number of successfully establishedSSL/TLS sessions in
server mode.

SSL_CTX_sess_accept_renegotiate()returns the number of start renegotiations in server mode.

SSL_CTX_sess_hits()returns the number of successfully reused sessions. In client mode a session set
with SSL_set_session(3) successfully reused is counted as a hit. In server mode a session successfully
retrieved from internal or external cache is counted as a hit.

SSL_CTX_sess_cb_hits()returns the number of successfully retrieved sessions from the external ses-
sion cache in server mode.

SSL_CTX_sess_misses()returns the number of sessions proposed by clients that were not found in the
internal session cache in server mode.

SSL_CTX_sess_timeouts()returns the number of sessions proposed by clients and either found in the
internal or external session cache in server mode,
but that were invalid due to timeout. These sessions are not included in theSSL_CTX_sess_hits()
count.

SSL_CTX_sess_cache_full()returns the number of sessions that were removed because the maximum
session cache size was exceeded.

RETURN VALUES
The functions return the values indicated in theDESCRIPTIONsection.

SEE ALSO
ssl(3), SSL_set_session(3), SSL_CTX_set_session_cache_mode(3) SSL_CTX_sess_set_cache_size(3)

0.9.7c 2001-02-16 313

SSL_CTX_sess_set_cache_size(3) OpenSSL SSL_CTX_sess_set_cache_size(3)

NAME
SSL_CTX_sess_set_cache_size, SSL_CTX_sess_get_cache_size − manipulate session cache size

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, long t);
long SSL_CTX_sess_get_cache_size(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sess_set_cache_size()sets the size of the internal session cache of contextctx to t.

SSL_CTX_sess_get_cache_size()returns the currently valid session cache size.

NOTES
The internal session cache size isSSL_SESSION_CACHE_MAX_SIZE_DEFAULT, currently 1024*20, so
that up to 20000 sessions can be held. This size can be modified using the
SSL_CTX_sess_set_cache_size()call. A special case is the size 0, which is used for unlimited size.

When the maximum number of sessions is reached, no more new sessions are added to the cache. New
space may be added by callingSSL_CTX_flush_sessions(3) to remove expired sessions.

If the size of the session cache is reduced and more sessions are already in the session cache, old ses-
sion will be removed at the next time a session shall be added. This removal is not synchronized with
the expiration of sessions.

RETURN VALUES
SSL_CTX_sess_set_cache_size()returns the previously valid size.

SSL_CTX_sess_get_cache_size()returns the currently valid size.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_sess_number(3), SSL_CTX_flush_ses-
sions(3)

314 2002-07-10 0.9.7c

SSL_CTX_sess_set_get_cb(3) OpenSSL SSL_CTX_sess_set_get_cb(3)

NAME
SSL_CTX_sess_set_new_cb, SSL_CTX_sess_set_remove_cb, SSL_CTX_sess_set_get_cb,
SSL_CTX_sess_get_new_cb, SSL_CTX_sess_get_remove_cb, SSL_CTX_sess_get_get_cb − provide
callback functions for server side external session caching

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx,
int (*new_session_cb)(SSL *, SSL_SESSION *));

void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx,
void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *));

void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx,
SSL_SESSION (*get_session_cb)(SSL *, unsigned char *, int, int *));

int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))(struct ssl_st *ssl, SSL_SESSION *sess);
void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(struct ssl_st *ssl, unsigned char *data, int len, int *copy);

int (*new_session_cb)(struct ssl_st *ssl, SSL_SESSION *sess);
void (*remove_session_cb)(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*get_session_cb)(struct ssl_st *ssl, unsigned char *data,

int len, int *copy);

DESCRIPTION
SSL_CTX_sess_set_new_cb()sets the callback function, which is automatically called whenever a new
session was negotiated.

SSL_CTX_sess_set_remove_cb()sets the callback function, which is automatically called whenever a
session is removed by theSSL engine, because it is considered faulty or the session has become obso-
lete because of exceeding the timeout value.

SSL_CTX_sess_set_get_cb()sets the callback function which is called, whenever aSSL/TLSclient pro-
posed to resume a session but the session could not be found in the internal session cache (see
SSL_CTX_set_session_cache_mode(3)). (SSL/TLSserver only.)

SSL_CTX_sess_get_new_cb(), SSL_CTX_sess_get_remove_cb(), and SSL_CTX_sess_get_get_cb()
allow to retrieve the function pointers of the provided callback functions. If a callback function has not
been set, theNULL pointer is returned.

NOTES
In order to allow external session caching, synchronization with the internal session cache is realized
via callback functions. Inside these callback functions, session can be saved to disk or put into a data-
base using thed2i_SSL_SESSION(3) interface.

The new_session_cb()is called, whenever a new session has been negotiated and session caching is
enabled (seeSSL_CTX_set_session_cache_mode(3)). Thenew_session_cb()is passed thessl connec-
tion and the ssl sessionsess. If the callback returns0, the session will be immediately removed again.

Theremove_session_cb()is called, whenever theSSLengine removes a session from the internal cache.
This happens when the session is removed because it is expired or when a connection was not shut-
down cleanly. It also happens for all sessions in the internal session cache whenSSL_CTX_free(3) is
called. Theremove_session_cb()is passed thectx and the ssl sessionsess. It does not provide any feed-
back.

Theget_session_cb()is only called onSSL/TLSservers with the session id proposed by the client. The
get_session_cb()is always called, also when session caching was disabled. Theget_session_cb()is
passed thesslconnection, the session id of lengthlength at the memory locationdata. With the param-
etercopy the callback can require theSSLengine to increment the reference count of theSSL_SESSION
object, Normally the reference count is not incremented and therefore the session must not be explicitly
freed withSSL_SESSION_free(3).

SEE ALSO
ssl(3), d2i_SSL_SESSION(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_flush_sessions(3),
SSL_SESSION_free(3), SSL_CTX_free(3)

0.9.7c 2003-03-27 315

SSL_CTX_sessions(3) OpenSSL SSL_CTX_sessions(3)

NAME
SSL_CTX_sessions − access internal session cache

SYNOPSIS
#include <openssl/ssl.h>

struct lhash_st *SSL_CTX_sessions(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_sessions()returns a pointer to the lhash databases containing the internal session cache for
ctx.

NOTES
The sessions in the internal session cache are kept in anlhash(3) type database. It is possible to directly
access this database e.g. for searching. In parallel, the sessions form a linked list which is maintained
separately from thelhash(3) operations, so that the database must not be modified directly but by using
theSSL_CTX_add_session(3) family of functions.

SEE ALSO
ssl(3), lhash(3), SSL_CTX_add_session(3), SSL_CTX_set_session_cache_mode(3)

316 2001-02-16 0.9.7c

SSL_CTX_set_cert_store(3) OpenSSL SSL_CTX_set_cert_store(3)

NAME
SSL_CTX_set_cert_store, SSL_CTX_get_cert_store − manipulate X509 certificate verification storage

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store);
X509_STORE *SSL_CTX_get_cert_store(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_set_cert_store()sets/replaces the certificate verification storage ofctx to/with store. If
another X509_STORE object is currently set inctx, it will be X509_STORE_free()ed.

SSL_CTX_get_cert_store()returns a pointer to the current certificate verification storage.

NOTES
In order to verify the certificates presented by the peer, trustedCA certificates must be accessed. These
CA certificates are made available via lookup methods, handled inside the X509_STORE. From the
X509_STORE the X509_STORE_CTX used when verifying certificates is created.

Typically the trusted certificate store is handled indirectly via usingSSL_CTX_load_verify_loca-
tions(3). Using theSSL_CTX_set_cert_store()andSSL_CTX_get_cert_store()functions it is possible
to manipulate the X509_STORE object beyond theSSL_CTX_load_verify_locations(3) call.

Currently no detailed documentation on how to use the X509_STORE object is available. Not all mem-
bers of the X509_STORE are used when the verification takes place. So will e.g. theverify_callback()
be overridden with theverify_callback()set via theSSL_CTX_set_verify(3) family of functions. This
document must therefore be updated when documentation about the X509_STORE object and its han-
dling becomes available.

RETURN VALUES
SSL_CTX_set_cert_store()does not return diagnostic output.

SSL_CTX_get_cert_store()returns the current setting.

SEE ALSO
ssl(3), SSL_CTX_load_verify_locations(3), SSL_CTX_set_verify(3)

0.9.7c 2002-06-04 317

SSL_CTX_set_cert_verify_callback(3) OpenSSL SSL_CTX_set_cert_verify_callback(3)

NAME
SSL_CTX_set_cert_verify_callback − set peer certificate verification procedure

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*callback)(X509_STORE_CTX *,void *), void *arg);

DESCRIPTION
SSL_CTX_set_cert_verify_callback()sets the verification callback function forctx. SSLobjects that are
created fromctx inherit the setting valid at the time whenSSL_new(3) is called.

NOTES
Whenever a certificate is verified during aSSL/TLShandshake, a verification function is called. If the
application does not explicitly specify a verification callback function, the built-in verification function
is used. If a verification callbackcallback is specified viaSSL_CTX_set_cert_verify_callback(), the
supplied callback function is called instead. By settingcallback to NULL, the default behaviour is
restored.

When the verification must be performed,callback will be called with the arguments call-
back(X509_STORE_CTX *x509_store_ctx, void *arg). The argumentarg is specified by the applica-
tion when settingcallback.

callback should return 1 to indicate verification success and 0 to indicate verification failure. If
SSL_VERIFY_PEERis set andcallbackreturns 0, the handshake will fail. As the verification procedure
may allow to continue the connection in case of failure (by always returning 1) the verification result
must be set in any case using theerror member ofx509_store_ctxso that the calling application will
be informed about the detailed result of the verification procedure!

Within x509_store_ctx, callbackhas access to theverify_callbackfunction set usingSSL_CTX_set_ver-
ify (3).

WARNINGS
Do not mix the verification callback described in this function with theverify_callback function called
during the verification process. The latter is set using theSSL_CTX_set_verify(3) family of functions.

Providing a complete verification procedure including certificate purpose settings etc is a complex task.
The built-in procedure is quite powerful and in most cases it should be sufficient to modify its behav-
iour using theverify_callback function.

BUGS
RETURN VALUES

SSL_CTX_set_cert_verify_callback()does not provide diagnostic information.

SEE ALSO
ssl(3), SSL_CTX_set_verify(3), SSL_get_verify_result(3), SSL_CTX_load_verify_locations(3)

HISTORY
Previous to OpenSSL 0.9.7, thearg argument toSSL_CTX_set_cert_verify_callbackwas ignored,
andcallbackwas called simply as
int (*callback)(X509_STORE_CTX *) To compile software written for previous versions of OpenSSL,
a dummy argument will have to be added tocallback.

318 2002-02-28 0.9.7c

SSL_CTX_set_cipher_list(3) OpenSSL SSL_CTX_set_cipher_list(3)

NAME
SSL_CTX_set_cipher_list, SSL_set_cipher_list − choose list of available SSL_CIPHERs

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str);
int SSL_set_cipher_list(SSL *ssl, const char *str);

DESCRIPTION
SSL_CTX_set_cipher_list()sets the list of available ciphers forctx using the control stringstr. The for-
mat of the string is described inciphers(1). The list of ciphers is inherited by allssl objects created
from ctx.

SSL_set_cipher_list()sets the list of ciphers only forssl.

NOTES
The control stringstr should be universally usable and not depend on details of the library configura-
tion (ciphers compiled in). Thus no syntax checking takes place. Items that are not recognized, because
the corresponding ciphers are not compiled in or because they are mistyped, are simply ignored. Failure
is only flagged if no ciphers could be collected at all.

It should be noted, that inclusion of a cipher to be used into the list is a necessary condition. On the
client side, the inclusion into the list is also sufficient. On the server side, additional restrictions apply.
All ciphers have additional requirements.ADH ciphers don’t need a certificate, but DH-parameters
must have been set. All other ciphers need a corresponding certificate and key.

A RSA cipher can only be chosen, when aRSA certificate is available.RSA export ciphers with a
keylength of 512 bits for theRSA key require a temporary 512 bitRSA key, as typically the supplied
key has a length of 1024 bit (seeSSL_CTX_set_tmp_rsa_callback(3)). RSA ciphers usingEDH need a
certificate and key and additional DH-parameters (seeSSL_CTX_set_tmp_dh_callback(3)).

A DSA cipher can only be chosen, when aDSA certificate is available.DSA ciphers always useDH key
exchange and therefore need DH-parameters (seeSSL_CTX_set_tmp_dh_callback(3)).

When these conditions are not met for any cipher in the list (e.g. a client only supports exportRSA
ciphers with a asymmetric key length of 512 bits and the server is not configured to use temporaryRSA
keys), the ‘‘no shared cipher’’ (SSL_R_NO_SHARED_CIPHER) error is generated and the handshake
will fail.

RETURN VALUES
SSL_CTX_set_cipher_list()andSSL_set_cipher_list()return 1 if any cipher could be selected and 0 on
complete failure.

SEE ALSO
ssl(3), SSL_get_ciphers(3), SSL_CTX_use_certificate(3), SSL_CTX_set_tmp_rsa_callback(3),
SSL_CTX_set_tmp_dh_callback(3), ciphers(1)

0.9.7c 2001-07-23 319

SSL_CTX_set_client_CA_list(3) OpenSSL SSL_CTX_set_client_CA_list(3)

NAME
SSL_CTX_set_client_CA_list, SSL_set_client_CA_list, SSL_CTX_add_client_CA,
SSL_add_client_CA − set list of CAs sent to the client when requesting a client certificate

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *list);
void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *list);
int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *cacert);
int SSL_add_client_CA(SSL *ssl, X509 *cacert);

DESCRIPTION
SSL_CTX_set_client_CA_list()sets thelist of CAs sent to the client when requesting a client certificate
for ctx.

SSL_set_client_CA_list()sets thelist of CAs sent to the client when requesting a client certificate for
the chosenssl, overriding the setting valid forssl’s SSL_CTXobject.

SSL_CTX_add_client_CA()adds theCA name extracted fromcacert to the list of CAs sent to the client
when requesting a client certificate forctx.

SSL_add_client_CA()adds theCA name extracted fromcacert to the list of CAs sent to the client when
requesting a client certificate for the chosenssl, overriding the setting valid forssl’s SSL_CTXobject.

NOTES
When aTLS/SSLserver requests a client certificate (seeSSL_CTX_set_verify_options()), it sends a list
of CAs, for which it will accept certificates, to the client.

This list must explicitly be set usingSSL_CTX_set_client_CA_list()for ctx and
SSL_set_client_CA_list()for the specificssl. The list specified overrides the previous setting. The CAs
listed do not become trusted (list only contains the names, not the complete certificates); use
SSL_CTX_load_verify_locations(3) to additionally load them for verification.

If the list of acceptable CAs is compiled in a file, theSSL_load_client_CA_file(3) function can be used
to help importing the necessary data.

SSL_CTX_add_client_CA()and SSL_add_client_CA()can be used to add additional items the list of
client CAs. If no list was specified before usingSSL_CTX_set_client_CA_list()or
SSL_set_client_CA_list(), a new clientCA list for ctx or ssl(as appropriate) is opened.

These functions are only useful forTLS/SSLservers.

RETURN VALUES
SSL_CTX_set_client_CA_list()andSSL_set_client_CA_list()do not return diagnostic information.

SSL_CTX_add_client_CA()andSSL_add_client_CA()have the following return values:

1 The operation succeeded.

• A failure while manipulating theSTACK_OF(X509_NAME) object occurred or the X509_NAME
could not be extracted fromcacert. Check the error stack to find out the reason.

EXAMPLES
Scan all certificates inCAfile and list them as acceptable CAs:

SSL_CTX_set_client_CA_list(ctx,SSL_load_client_CA_file(CAfile));

SEE ALSO
ssl(3), SSL_get_client_CA_list(3), SSL_load_client_CA_file(3), SSL_CTX_load_verify_locations(3)

320 2001-04-12 0.9.7c

SSL_CTX_set_client_cert_cb(3) OpenSSL SSL_CTX_set_client_cert_cb(3)

NAME
SSL_CTX_set_client_cert_cb, SSL_CTX_get_client_cert_cb − handle client certificate callback func-
tion

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey));
int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL *ssl, X509 **x509, EVP_PKEY **pkey);
int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey);

DESCRIPTION
SSL_CTX_set_client_cert_cb()sets theclient_cert_cb() callback, that is called when a client certificate
is requested by a server and no certificate was yet set for theSSLobject.

Whenclient_cert_cb() is NULL, no callback function is used.

SSL_CTX_get_client_cert_cb()returns a pointer to the currently set callback function.

client_cert_cb()is the application defined callback. If it wants to set a certificate, a certificate/private
key combination must be set using thex509andpkey arguments and ‘‘1’’ must be returned. The certifi-
cate will be installed intossl, see theNOTESandBUGS sections. If no certificate should be set, ‘‘0’’
has to be returned and no certificate will be sent. A negative return value will suspend the handshake
and the handshake function will return immediatly.SSL_get_error(3) will return
SSL_ERROR_WANT_X509_LOOKUPto indicate, that the handshake was suspended. The next call to the
handshake function will again lead to the call ofclient_cert_cb(). It is the job of theclient_cert_cb()to
store information about the state of the last call, if required to continue.

NOTES
During a handshake (or renegotiation) a server may request a certificate from the client. A client certifi-
cate must only be sent, when the server did send the request.

When a certificate was set using theSSL_CTX_use_certificate(3) family of functions, it will be sent to
the server. TheTLS standard requires that only a certificate is sent, if it matches the list of acceptable
CAs sent by the server. This constraint is violated by the default behavior of the OpenSSL library.
Using the callback function it is possible to implement a proper selection routine or to allow a user
interaction to choose the certificate to be sent.

If a callback function is defined and no certificate was yet defined for theSSLobject, the callback func-
tion will be called. If the callback function returns a certificate, the OpenSSL library will try to load
the private key and certificate data into theSSLobject using theSSL_use_certificate()andSSL_use_pri-
vate_key()functions. Thus it will permanently install the certificate and key for thisSSL object. It will
not be reset by callingSSL_clear(3). If the callback returns no certificate, the OpenSSL library will
not send a certificate.

BUGS
Theclient_cert_cb()cannot return a complete certificate chain, it can only return one client certificate.
If the chain only has a length of 2, the rootCA certificate may be omitted according to theTLS standard
and thus a standard conforming answer can be sent to the server. For a longer chain, the client must
send the complete chain (with the option to leave out the rootCA certificate). This can only be accom-
plished by either adding the intermediateCA certificates into the trusted certificate store for the
SSL_CTXobject (resulting in having to addCA certificates that otherwise maybe would not be trusted),
or by adding the chain certificates using theSSL_CTX_add_extra_chain_cert(3) function, which is
only available for theSSL_CTX object as a whole and that therefore probably can only apply for one
client certificate, making the concept of the callback function (to allow the choice from several certifi-
cates) questionable.

Once theSSL object has been used in conjunction with the callback function, the certificate will be set
for the SSL object and will not be cleared even whenSSL_clear(3) is being called. It is therefore
mandatory to destroy theSSL object usingSSL_free(3) and create a new one to return to the previous
state.

0.9.7c 2002-06-12 321

SSL_CTX_set_client_cert_cb(3) OpenSSL SSL_CTX_set_client_cert_cb(3)

SEE ALSO
ssl(3), SSL_CTX_use_certificate(3), SSL_CTX_add_extra_chain_cert(3), SSL_get_client_CA_list(3),
SSL_clear(3), SSL_free(3)

322 2002-06-12 0.9.7c

SSL_CTX_set_default_passwd_cb(3) OpenSSL SSL_CTX_set_default_passwd_cb(3)

NAME
SSL_CTX_set_default_passwd_cb, SSL_CTX_set_default_passwd_cb_userdata − set passwd callback
for encrypted PEM file handling

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb);
void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u);

int pem_passwd_cb(char *buf, int size, int rwflag, void *userdata);

DESCRIPTION
SSL_CTX_set_default_passwd_cb()sets the default password callback called when loading/storing a
PEM certificate with encryption.

SSL_CTX_set_default_passwd_cb_userdata()sets a pointer touserdatawhich will be provided to the
password callback on invocation.

Thepem_passwd_cb(), which must be provided by the application, hands back the password to be used
during decryption. On invocation a pointer touserdata is provided. The pem_passwd_cb must write
the password into the provided bufferbuf which is of sizesize. The actual length of the password must
be returned to the calling function.rwflag indicates whether the callback is used for reading/decryption
(rwflag=0) or writing/encryption (rwflag=1).

NOTES
When loading or storing private keys, a password might be supplied to protect the private key. The way
this password can be supplied may depend on the application. If only one private key is handled, it can
be practical to havepem_passwd_cb()handle the password dialog interactively. If sev eral keys hav e to
be handled, it can be practical to ask for the password once, then keep it in memory and use it several
times. In the last case, the password could be stored into theuserdata storage and the
pem_passwd_cb()only returns the password already stored.

When asking for the password interactively,pem_passwd_cb()can userwflag to check, whether an
item shall be encrypted (rwflag=1). In this case the password dialog may ask for the same password
twice for comparison in order to catch typos, that would make decryption impossible.

Other items inPEM formatting (certificates) can also be encrypted, it is however not usual, as certificate
information is considered public.

RETURN VALUES
SSL_CTX_set_default_passwd_cb()and SSL_CTX_set_default_passwd_cb_userdata()do not provide
diagnostic information.

EXAMPLES
The following example returns the password provided asuserdata to the calling function. The pass-
word is considered to be a ’\0’ terminated string. If the password does not fit into the buffer, the pass-
word is truncated.

int pem_passwd_cb(char *buf, int size, int rwflag, void *password)
{

strncpy(buf, (char *)(password), size);
buf[size - 1] = ’\0’;
return(strlen(buf));

}

SEE ALSO
ssl(3), SSL_CTX_use_certificate(3)

0.9.7c 2001-07-11 323

SSL_CTX_set_generate_session_id(3) OpenSSL SSL_CTX_set_generate_session_id(3)

NAME
SSL_CTX_set_generate_session_id, SSL_set_generate_session_id, SSL_has_matching_session_id −
manipulate generation of SSL session IDs (server only)

SYNOPSIS
#include <openssl/ssl.h>

typedef int (*GEN_SESSION_CB)(const SSL *ssl, unsigned char *id,
unsigned int *id_len);

int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb);
int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB, cb);
int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,

unsigned int id_len);

DESCRIPTION
SSL_CTX_set_generate_session_id()sets the callback function for generating new session ids for
SSL/TLSsessions forctx to becb.

SSL_set_generate_session_id()sets the callback function for generating new session ids forSSL/TLS
sessions forsslto becb.

SSL_has_matching_session_id()checks, whether a session with idid (of lengthid_len) is already con-
tained in the internal session cache of the parent context ofssl.

NOTES
When a new session is established between client and server, the server generates a session id. The ses-
sion id is an arbitrary sequence of bytes. The length of the session id is 16 bytes for SSLv2 sessions
and between 1 and 32 bytes for SSLv3/TLSv1. The session id is not security critical but must be unique
for the server. Additionally, the session id is transmitted in the clear when reusing the session so it must
not contain sensitive information.

Without a callback being set, an OpenSSL server will generate a unique session id from pseudo random
numbers of the maximum possible length. Using the callback function, the session id can be changed
to contain additional information like e.g. a host id in order to improve load balancing or external
caching techniques.

The callback function receives a pointer to the memory location to putid into and a pointer to the max-
imum allowed lengthid_len. The buffer at locationid is only guaranteed to have the sizeid_len. The
callback is only allowed to generate a shorter id and reduceid_len; the callbackmust never increase
id_len or write to the locationid exceeding the given limit.

If a SSLv2 session id is generated andid_len is reduced, it will be restored after the callback has fin-
ished and the session id will be padded with 0x00. It is not recommended to change theid_len for
SSLv2 sessions. The callback can use theSSL_get_version(3) function to check, whether the session
is of type SSLv2.

The locationid is filled with 0x00 before the callback is called, so the callback may only fill part of the
possible length and leaveid_len untouched while maintaining reproducibility.

Since the sessions must be distinguished, session ids must be unique. Without the callback a random
number is used, so that the probability of generating the same session id is extremely small (2ˆ128 pos-
sible ids for an SSLv2 session, 2ˆ256 for SSLv3/TLSv1). In order to assure the uniqueness of the gen-
erated session id, the callback must callSSL_has_matching_session_id()and generate another id if a
conflict occurs. If an id conflict is not resolved, the handshake will fail. If the application codes e.g. a
unique host id, a unique process number, and a unique sequence number into the session id, uniqueness
could easily be achieved without randomness added (it should however be taken care that no confiden-
tial information is leaked this way). If the application can not guarantee uniqueness, it is recommended
to use the maximumid_len and fill in the bytes not used to code special information with random data
to avoid collisions.

SSL_has_matching_session_id()will only query the internal session cache, not the external one. Since
the session id is generated before the handshake is completed, it is not immediately added to the cache.
If another thread is using the same internal session cache, a race condition can occur in that another
thread generates the same session id. Collisions can also occur when using an external session cache,

324 2001-02-23 0.9.7c

SSL_CTX_set_generate_session_id(3) OpenSSL SSL_CTX_set_generate_session_id(3)

since the external cache is not tested withSSL_has_matching_session_id()and the same race condition
applies.

When callingSSL_has_matching_session_id()for an SSLv2 session with reducedid_len, the match
operation will be performed using the fixed length required and with a 0x00 padded id.

The callback must return 0 if it cannot generate a session id for whatever reason and return 1 on suc-
cess.

EXAMPLES
The callback function listed will generate a session id with the server id given, and will fill the rest with
pseudo random bytes:

const char session_id_prefix = "www-18";

#define MAX_SESSION_ID_ATTEMPTS 10
static int generate_session_id(const SSL *ssl, unsigned char *id,

unsigned int *id_len)
{
unsigned int count = 0;
const char *version;

version = SSL_get_version(ssl);
if (!strcmp(version, "SSLv2"))

/* we must not change id_len */;

do {
RAND_pseudo_bytes(id, *id_len);
/* Prefix the session_id with the required prefix. NB: If our

* prefix is too long, clip it - but there will be worse effects
* anyway, eg. the server could only possibly create 1 session
* ID (ie. the prefix!) so all future session negotiations will
* fail due to conflicts. */

memcpy(id, session_id_prefix,
(strlen(session_id_prefix) < *id_len) ?
strlen(session_id_prefix) : *id_len);

}
while(SSL_has_matching_session_id(ssl, id, *id_len) &&

(++count < MAX_SESSION_ID_ATTEMPTS));
if(count >= MAX_SESSION_ID_ATTEMPTS)

return 0;
return 1;
}

RETURN VALUES
SSL_CTX_set_generate_session_id()andSSL_set_generate_session_id()always return 1.

SSL_has_matching_session_id()returns 1 if another session with the same id is already in the cache.

SEE ALSO
ssl(3), SSL_get_version(3)

HISTORY
SSL_CTX_set_generate_session_id(), SSL_set_generate_session_id()and SSL_has_matching_ses-
sion_id()have been introduced in OpenSSL 0.9.7.

0.9.7c 2001-02-23 325

SSL_CTX_set_info_callback(3) OpenSSL SSL_CTX_set_info_callback(3)

NAME
SSL_CTX_set_info_callback, SSL_CTX_get_info_callback, SSL_set_info_callback,
SSL_get_info_callback − handle information callback for SSL connections

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*callback)());
void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))();

void SSL_set_info_callback(SSL *ssl, void (*callback)());
void (*SSL_get_info_callback(SSL *ssl))();

DESCRIPTION
SSL_CTX_set_info_callback()sets thecallback function, that can be used to obtain state information
for SSL objects created fromctx during connection setup and use. The setting forctx is overridden
from the setting for a specificSSL object, if specified. Whencallback is NULL, not callback function
is used.

SSL_set_info_callback()sets thecallback function, that can be used to obtain state information forssl
during connection setup and use. Whencallback is NULL, the callback setting currently valid forctx
is used.

SSL_CTX_get_info_callback()returns a pointer to the currently set information callback function for
ctx.

SSL_get_info_callback()returns a pointer to the currently set information callback function forssl.

NOTES
When setting up a connection and during use, it is possible to obtain state information from the
SSL/TLS engine. When set, an information callback function is called whenever the state changes, an
alert appears, or an error occurs.

The callback function is called ascallback(SSL *ssl, int where, int ret). Thewhere argument speci-
fies information about where (in which context) the callback function was called. Ifret is 0, an error
condition occurred. If an alert is handled,SSL_CB_ALERTis set andret specifies the alert information.

where is a bitmask made up of the following bits:

SSL_CB_LOOP
Callback has been called to indicate state change inside a loop.

SSL_CB_EXIT
Callback has been called to indicate error exit of a handshake function. (May be soft error with
retry option for non-blocking setups.)

SSL_CB_READ
Callback has been called during read operation.

SSL_CB_WRITE
Callback has been called during write operation.

SSL_CB_ALERT
Callback has been called due to an alert being sent or received.

SSL_CB_READ_ALERT (SSL_CB_ALERTSSL_CB_READ)
SSL_CB_WRITE_ALERT (SSL_CB_ALERTSSL_CB_WRITE)
SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPTSSL_CB_LOOP)
SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPTSSL_CB_EXIT)
SSL_CB_CONNECT_LOOP (SSL_ST_CONNECTSSL_CB_LOOP)
SSL_CB_CONNECT_EXIT (SSL_ST_CONNECTSSL_CB_EXIT)
SSL_CB_HANDSHAKE_START

Callback has been called because a new handshake is started.

SSL_CB_HANDSHAKE_DONE 0x20
Callback has been called because a handshake is finished.

The current state information can be obtained using theSSL_state_string(3) family of functions.

326 2001-11-10 0.9.7c

SSL_CTX_set_info_callback(3) OpenSSL SSL_CTX_set_info_callback(3)

Theret information can be evaluated using theSSL_alert_type_string(3) family of functions.

RETURN VALUES
SSL_set_info_callback()does not provide diagnostic information.

SSL_get_info_callback()returns the current setting.

EXAMPLES
The following example callback function prints state strings, information about alerts being handled
and error messages to thebio_err BIO.

void apps_ssl_info_callback(SSL *s, int where, int ret)
{
const char *str;
int w;

w=where& ˜SSL_ST_MASK;

if (w & SSL_ST_CONNECT) str="SSL_connect";
else if (w & SSL_ST_ACCEPT) str="SSL_accept";
else str="undefined";

if (where & SSL_CB_LOOP)
{
BIO_printf(bio_err,"%s:%s\n",str,SSL_state_string_long(s));
}

else if (where & SSL_CB_ALERT)
{
str=(where & SSL_CB_READ)?"read":"write";
BIO_printf(bio_err,"SSL3 alert %s:%s:%s\n",

str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));

}
else if (where & SSL_CB_EXIT)

{
if (ret == 0)

BIO_printf(bio_err,"%s:failed in %s\n",
str,SSL_state_string_long(s));

else if (ret < 0)
{
BIO_printf(bio_err,"%s:error in %s\n",

str,SSL_state_string_long(s));
}

}
}

SEE ALSO
ssl(3), SSL_state_string(3), SSL_alert_type_string(3)

0.9.7c 2001-11-10 327

SSL_CTX_set_max_cert_list(3) OpenSSL SSL_CTX_set_max_cert_list(3)

NAME
SSL_CTX_set_max_cert_list, SSL_CTX_get_max_cert_list, SSL_set_max_cert_list,
SSL_get_max_cert_list, − manipulate allowed for the peer’s certificate chain

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_max_cert_list(SSL_CTX *ctx, long size);
long SSL_CTX_get_max_cert_list(SSL_CTX *ctx);

long SSL_set_max_cert_list(SSL *ssl, long size);
long SSL_get_max_cert_list(SSL *ctx);

DESCRIPTION
SSL_CTX_set_max_cert_list()sets the maximum size allowed for the peer’s certificate chain for allSSL
objects created fromctx to be <size> bytes. TheSSLobjects inherit the setting valid forctx at the time
SSL_new(3) is being called.

SSL_CTX_get_max_cert_list()returns the currently set maximum size forctx.

SSL_set_max_cert_list()sets the maximum size allowed for the peer’s certificate chain forssl to be
<size> bytes. This setting stays valid until a new value is set.

SSL_get_max_cert_list()returns the currently set maximum size forssl.

NOTES
During the handshake process, the peer may send a certificate chain. TheTLS/SSL standard does not
give any maximum size of the certificate chain. The OpenSSL library handles incoming data by a
dynamically allocated buffer. In order to prevent this buffer from growing without bounds due to data
received from a faulty or malicious peer, a maximum size for the certificate chain is set.

The default value for the maximum certificate chain size is 100kB (30kB on the 16bitDOS platform).
This should be sufficient for usual certificate chains (OpenSSL’s default maximum chain length is 10,
seeSSL_CTX_set_verify(3), and certificates without special extensions have a typical size of 1−2kB).

For special applications it can be necessary to extend the maximum certificate chain size allowed to be
sent by the peer, see e.g. the work on ‘‘Internet X.509 Public Key Infrastructure Proxy Certificate Pro-
file’’ and ‘‘ TLS Delegation Protocol’’ at http://www.ietf.org/ and http://www.globus.org/ .

Under normal conditions it should never be necessary to set a value smaller than the default, as the
buffer is handled dynamically and only uses the memory actually required by the data sent by the peer.

If the maximum certificate chain size allowed is exceeded, the handshake will fail with a
SSL_R_EXCESSIVE_MESSAGE_SIZEerror.

RETURN VALUES
SSL_CTX_set_max_cert_list()andSSL_set_max_cert_list()return the previously set value.

SSL_CTX_get_max_cert_list()andSSL_get_max_cert_list()return the currently set value.

SEE ALSO
ssl(3), SSL_new(3), SSL_CTX_set_verify(3)

HISTORY
SSL*_set/get_max_cert_list()have been introduced in OpenSSL 0.9.7.

328 2001-09-11 0.9.7c

SSL_CTX_set_mode(3) OpenSSL SSL_CTX_set_mode(3)

NAME
SSL_CTX_set_mode, SSL_set_mode, SSL_CTX_get_mode, SSL_get_mode − manipulate SSL engine
mode

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_mode(SSL_CTX *ctx, long mode);
long SSL_set_mode(SSL *ssl, long mode);

long SSL_CTX_get_mode(SSL_CTX *ctx);
long SSL_get_mode(SSL *ssl);

DESCRIPTION
SSL_CTX_set_mode()adds the mode set via bitmask inmode to ctx. Options already set before are
not cleared.

SSL_set_mode()adds the mode set via bitmask inmode to ssl. Options already set before are not
cleared.

SSL_CTX_get_mode()returns the mode set forctx.

SSL_get_mode()returns the mode set forssl.

NOTES
The following mode changes are available:

SSL_MODE_ENABLE_PARTIAL_WRITE
Allow SSL_write(..., n) to return r with 0 < r < n (i.e. report success when just a single record has
been written). When not set (the default),SSL_write()will only report success once the complete
chunk was written. OnceSSL_write()returns with r, r bytes have been successfully written and
the next call toSSL_write()must only send the n−r bytes left, imitating the behaviour ofwrite().

SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER
Make it possible to retrySSL_write()with changed buffer location (the buffer contents must stay
the same). This is not the default to avoid the misconception that non-blockingSSL_write()
behaves like non-blockingwrite().

SSL_MODE_AUTO_RETRY
Never bother the application with retries if the transport is blocking. If a renegotiation take place
during normal operation, aSSL_read(3) or SSL_write(3) would return with −1 and indicate the
need to retry withSSL_ERROR_WANT_READ. In a non-blocking environment applications must
be prepared to handle incomplete read/write operations. In a blocking environment, applications
are not always prepared to deal with read/write operations returning without success report. The
flag SSL_MODE_AUTO_RETRYwill cause read/write operations to only return after the handshake
and successful completion.

RETURN VALUES
SSL_CTX_set_mode()andSSL_set_mode()return the new mode bitmask after addingmode.

SSL_CTX_get_mode()andSSL_get_mode()return the current bitmask.

SEE ALSO
ssl(3), SSL_read(3), SSL_write(3)

HISTORY
SSL_MODE_AUTO_RETRYas been added in OpenSSL 0.9.6.

0.9.7c 2001-07-11 329

SSL_CTX_set_msg_callback(3) OpenSSL SSL_CTX_set_msg_callback(3)

NAME
SSL_CTX_set_msg_callback, SSL_CTX_set_msg_callback_arg, SSL_set_msg_callback,
SSL_get_msg_callback_arg − install callback for observing protocol messages

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg));
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

void SSL_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg));
void SSL_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

DESCRIPTION
SSL_CTX_set_msg_callback()or SSL_set_msg_callback()can be used to define a message callback
function cb for observing allSSL/TLS protocol messages (such as handshake messages) that are
received or sent.SSL_CTX_set_msg_callback_arg()andSSL_set_msg_callback_arg()can be used to
set argumentarg to the callback function, which is available for arbitrary application use.

SSL_CTX_set_msg_callback()andSSL_CTX_set_msg_callback_arg()specify default settings that will
be copied to newSSL objects by SSL_new(3). SSL_set_msg_callback()and SSL_set_msg_call-
back_arg()modify the actual settings of anSSL object. Using a0 pointer forcb disables the message
callback.

Whencb is called by theSSL/TLSlibrary for a protocol message, the function arguments have the fol-
lowing meaning:

write_p
This flag is0 when a protocol message has been received and1 when a protocol message has been
sent.

version
The protocol version according to which the protocol message is interpreted by the library. Cur-
rently, this is one ofSSL2_VERSION, SSL3_VERSIONandTLS1_VERSION (for SSL 2.0,SSL 3.0
andTLS 1.0, respectively).

content_type
In the case ofSSL 2.0, this is always0. In the case ofSSL 3.0 orTLS 1.0, this is one of theCon-
tentType values defined in the protocol specification (change_cipher_spec(20), alert(21), hand-
shake(22); but neverapplication_data(23)because the callback will only be called for protocol
messages).

buf, len
buf points to a buffer containing the protocol message, which consists oflen bytes. The buffer is
no longer valid after the callback function has returned.

ssl TheSSL object that received or sent the message.

arg The user-defined argument optionally defined bySSL_CTX_set_msg_callback_arg()or
SSL_set_msg_callback_arg().

NOTES
Protocol messages are passed to the callback function after decryption and fragment collection where
applicable. (Thus record boundaries are not visible.)

If processing a received protocol message results in an error, the callback function may not be called.
For example, the callback function will never see messages that are considered too large to be pro-
cessed.

Due to automatic protocol version negotiation,versionis not necessarily the protocol version used by
the sender of the message: If aTLS 1.0 ClientHello message is received by anSSL3.0−only server,ver-
sionwill be SSL3_VERSION.

SEE ALSO
ssl(3), SSL_new(3)

330 2002-08-15 0.9.7c

SSL_CTX_set_msg_callback(3) OpenSSL SSL_CTX_set_msg_callback(3)

HISTORY
SSL_CTX_set_msg_callback(), SSL_CTX_set_msg_callback_arg(), SSL_set_msg_callback()and
SSL_get_msg_callback_arg()were added in OpenSSL 0.9.7.

0.9.7c 2002-08-15 331

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

NAME
SSL_CTX_set_options, SSL_set_options, SSL_CTX_get_options, SSL_get_options − manipulate SSL
engine options

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_options(SSL_CTX *ctx, long options);
long SSL_set_options(SSL *ssl, long options);

long SSL_CTX_get_options(SSL_CTX *ctx);
long SSL_get_options(SSL *ssl);

DESCRIPTION
SSL_CTX_set_options()adds the options set via bitmask inoptions to ctx. Options already set before
are not cleared!

SSL_set_options()adds the options set via bitmask inoptions to ssl. Options already set before are not
cleared!

SSL_CTX_get_options()returns the options set forctx.

SSL_get_options()returns the options set forssl.

NOTES
The behaviour of theSSL library can be changed by setting several options. The options are coded as
bitmasks and can be combined by a logicalor operation (). Options can only be added but can never
be reset.

SSL_CTX_set_options()and SSL_set_options()affect the (external) protocol behaviour of theSSL
library. The (internal) behaviour of theAPI can be changed by using the similarSSL_CTX_set_mode(3)
andSSL_set_mode()functions.

During a handshake, the option settings of theSSL object are used. When a newSSL object is created
from a context usingSSL_new(), the current option setting is copied. Changes toctx do not affect
already createdSSLobjects.SSL_clear()does not affect the settings.

The followingbug workaround options are available:

SSL_OP_MICROSOFT_SESS_ID_BUG
www.microsoft.com − when talking SSLv2, if session-id reuse is performed, the session-id passed
back in the server-finished message is different from the one decided upon.

SSL_OP_NETSCAPE_CHALLENGE_BUG
Netscape−Commerce/1.12, when talking SSLv2, accepts a 32 byte challenge but then appears to
only use 16 bytes when generating the encryption keys. Using 16 bytes is ok but it should be ok
to use 32. According to the SSLv3 spec, one should use 32 bytes for the challenge when operat-
ing in SSLv2/v3 compatibility mode, but as mentioned above, this breaks this server so 16 bytes is
the way to go.

SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
ssl3.netscape.com:443, first a connection is established withRC4−MD5. If it is then resumed, we
end up usingDES−CBC3−SHA. It should beRC4−MD5according to 7.6.1.3, ’cipher_suite’.

Netscape−Enterprise/2.01 (https://merchant.netscape.com) has this bug. It only really shows up
when connecting via SSLv2/v3 then reconnecting via SSLv3. The cipher list changes....

NEW INFORMATION. Try connecting with a cipher list of justDES−CBC−SHA:RC4−MD5. For
some weird reason, each new connection usesRC4−MD5, but a re-connect tries to use
DES−CBC−SHA. So netscape, when doing a re−connect, always takes the first cipher in the cipher
list.

SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
...

SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
...

332 2003-03-20 0.9.7c

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

SSL_OP_MSIE_SSLV2_RSA_PADDING
...

SSL_OP_SSLEAY_080_CLIENT_DH_BUG
...

SSL_OP_TLS_D5_BUG
...

SSL_OP_TLS_BLOCK_PADDING_BUG
...

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
Disables a countermeasure against aSSL3.0/TLS 1.0 protocol vulnerability affectingCBC ciphers,
which cannot be handled by some brokenSSLimplementations. This option has no effect for con-
nections using other ciphers.

SSL_OP_ALL
All of the above bug workarounds.

It is usually safe to useSSL_OP_ALL to enable the bug workaround options if compatibility with some-
what broken implementations is desired.

The followingmodifying options are available:

SSL_OP_TLS_ROLLBACK_BUG
Disable version rollback attack detection.

During the client key exchange, the client must send the same information about acceptable
SSL/TLSprotocol levels as during the first hello. Some clients violate this rule by adapting to the
server’s answer. (Example: the client sends a SSLv2 hello and accepts up to SSLv3.1=TLSv1, the
server only understands up to SSLv3. In this case the client must still use the same
SSLv3.1=TLSv1 announcement. Some clients step down to SSLv3 with respect to the server’s
answer and violate the version rollback protection.)

SSL_OP_SINGLE_DH_USE
Always create a new key when using temporary/ephemeralDH parameters (see
SSL_CTX_set_tmp_dh_callback(3)). This option must be used to prevent small subgroup attacks,
when theDH parameters were not generated using ‘‘strong’’ primes (e.g. when using DSA−param-
eters, seedhparam(1)). If ‘‘strong’’ primes were used, it is not strictly necessary to generate a
new DH key during each handshake but it is also recommended.SSL_OP_SINGLE_DH_USE
should therefore be enabled whenever temporary/ephemeralDH parameters are used.

SSL_OP_EPHEMERAL_RSA
Always use ephemeral (temporary)RSA key when doing RSA operations (see
SSL_CTX_set_tmp_rsa_callback(3)). According to the specifications this is only done, when a
RSA key can only be used for signature operations (namely under export ciphers with restricted
RSA keylength). By setting this option, ephemeralRSA keys are always used. This option breaks
compatibility with theSSL/TLS specifications and may lead to interoperability problems with
clients and should therefore never be used. Ciphers withEDH (ephemeral Diffie−Hellman) key
exchange should be used instead.

SSL_OP_CIPHER_SERVER_PREFERENCE
When choosing a cipher, use the server’s preferences instead of the client preferences. When not
set, theSSL server will always follow the clients preferences. When set, the SSLv3/TLSv1 server
will choose following its own preferences. Because of the different protocol, for SSLv2 the server
will send his list of preferences to the client and the client chooses.

SSL_OP_PKCS1_CHECK_1
...

SSL_OP_PKCS1_CHECK_2
...

SSL_OP_NETSCAPE_CA_DN_BUG
If we accept a netscape connection, demand a client cert, have a non-self-signedCA which does
not have itsCA in netscape, and the browser has a cert, it will crash/hang. Works for 3.x and
4.xbeta

0.9.7c 2003-03-20 333

SSL_CTX_set_options(3) OpenSSL SSL_CTX_set_options(3)

SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG
...

SSL_OP_NO_SSLv2
Do not use the SSLv2 protocol.

SSL_OP_NO_SSLv3
Do not use the SSLv3 protocol.

SSL_OP_NO_TLSv1
Do not use the TLSv1 protocol.

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
When performing renegotiation as a server, always start a new session (i.e., session resumption
requests are only accepted in the initial handshake). This option is not needed for clients.

RETURN VALUES
SSL_CTX_set_options()andSSL_set_options()return the new options bitmask after addingoptions.

SSL_CTX_get_options()andSSL_get_options()return the current bitmask.

SEE ALSO
ssl(3), SSL_new(3), SSL_clear(3), SSL_CTX_set_tmp_dh_callback(3), SSL_CTX_set_tmp_rsa_call-
back(3), dhparam(1)

HISTORY
SSL_OP_CIPHER_SERVER_PREFERENCE and SSL_OP_NO_SESSION_RESUMPTION_ON_RENE-
GOTIATION have been added in OpenSSL 0.9.7.

SSL_OP_TLS_ROLLBACK_BUG has been added in OpenSSL 0.9.6 and was automatically enabled
with SSL_OP_ALL. As of 0.9.7, it is no longer included inSSL_OP_ALL and must be explicitly set.

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS has been added in OpenSSL 0.9.6e. Versions up to
OpenSSL 0.9.6c do not include the countermeasure that can be disabled with this option (in OpenSSL
0.9.6d, it was always enabled).

334 2003-03-20 0.9.7c

SSL_CTX_set_quiet_shutdown(3) OpenSSL SSL_CTX_set_quiet_shutdown(3)

NAME
SSL_CTX_set_quiet_shutdown, SSL_CTX_get_quiet_shutdown, SSL_set_quiet_shutdown,
SSL_get_quiet_shutdown − manipulate shutdown behaviour

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode);
int SSL_CTX_get_quiet_shutdown(SSL_CTX *ctx);

void SSL_set_quiet_shutdown(SSL *ssl, int mode);
int SSL_get_quiet_shutdown(SSL *ssl);

DESCRIPTION
SSL_CTX_set_quiet_shutdown()sets the ‘‘quiet shutdown’’ flag forctx to bemode. SSL objects cre-
ated fromctx inherit themodevalid at the timeSSL_new(3) is called.modemay be 0 or 1.

SSL_CTX_get_quiet_shutdown()returns the ‘‘quiet shutdown’’ setting ofctx.

SSL_set_quiet_shutdown()sets the ‘‘quiet shutdown’’ flag forssl to bemode. The setting stays valid
until ssl is removed withSSL_free(3) or SSL_set_quiet_shutdown()is called again. It is not changed
whenSSL_clear(3) is called.modemay be 0 or 1.

SSL_get_quiet_shutdown()returns the ‘‘quiet shutdown’’ setting ofssl.

NOTES
Normally when aSSL connection is finished, the parties must send out ‘‘close notify’’ alert messages
usingSSL_shutdown(3) for a clean shutdown.

When setting the ‘‘quiet shutdown’’ flag to 1,SSL_shutdown(3) will set the internal flags to
SSL_SENT_SHUTDOWNSSL_RECEIVED_SHUTDOWN. (SSL_shutdown(3) then behaves like
SSL_set_shutdown(3) called with SSL_SENT_SHUTDOWNSSL_RECEIVED_SHUTDOWN.) The
session is thus considered to be shutdown, but no ‘‘close notify’’ alert is sent to the peer. This behaviour
violates theTLS standard.

The default is normal shutdown behaviour as described by theTLS standard.

RETURN VALUES
SSL_CTX_set_quiet_shutdown()andSSL_set_quiet_shutdown()do not return diagnostic information.

SSL_CTX_get_quiet_shutdown()and SSL_get_quiet_shutdown return the current setting.

SEE ALSO
ssl(3), SSL_shutdown(3), SSL_set_shutdown(3), SSL_new(3), SSL_clear(3), SSL_free(3)

0.9.7c 2001-08-17 335

SSL_CTX_set_session_cache_mode(3) OpenSSL SSL_CTX_set_session_cache_mode(3)

NAME
SSL_CTX_set_session_cache_mode, SSL_CTX_get_session_cache_mode − enable/disable session
caching

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_session_cache_mode(SSL_CTX ctx, long mode);
long SSL_CTX_get_session_cache_mode(SSL_CTX ctx);

DESCRIPTION
SSL_CTX_set_session_cache_mode()enables/disables session caching by setting the operational mode
for ctx to <mode>.

SSL_CTX_get_session_cache_mode()returns the currently used cache mode.

NOTES
The OpenSSL library can store/retrieveSSL/TLSsessions for later reuse. The sessions can be held in
memory for eachctx, if more than oneSSL_CTXobject is being maintained, the sessions are unique for
eachSSL_CTXobject.

In order to reuse a session, a client must send the session’s id to the server. It can only send exactly one
id. The server then either agrees to reuse the session or it starts a full handshake (to create a new ses-
sion).

A server will lookup up the session in its internal session storage. If the session is not found in internal
storage or lookups for the internal storage have been deactivated (SSL_SESS_CACHE_NO_INTER-
NAL_LOOKUP), the server will try the external storage if available.

Since a client may try to reuse a session intended for use in a different context, the session id context
must be set by the server (seeSSL_CTX_set_session_id_context(3)).

The following session cache modes and modifiers are available:

SSL_SESS_CACHE_OFF
No session caching for client or server takes place.

SSL_SESS_CACHE_CLIENT
Client sessions are added to the session cache. As there is no reliable way for the OpenSSL library
to know whether a session should be reused or which session to choose (due to the abstractBIO
layer theSSL engine does not have details about the connection), the application must select the
session to be reused by using theSSL_set_session(3) function. This option is not activated by
default.

SSL_SESS_CACHE_SERVER
Server sessions are added to the session cache. When a client proposes a session to be reused, the
server looks for the corresponding session in (first) the internal session cache (unless
SSL_SESS_CACHE_NO_INTERNAL_LOOKUPis set), then (second) in the external cache if avail-
able. If the session is found, the server will try to reuse the session. This is the default.

SSL_SESS_CACHE_BOTH
Enable bothSSL_SESS_CACHE_CLIENTandSSL_SESS_CACHE_SERVERat the same time.

SSL_SESS_CACHE_NO_AUTO_CLEAR
Normally the session cache is checked for expired sessions every 255 connections using the
SSL_CTX_flush_sessions(3) function. Since this may lead to a delay which cannot be controlled,
the automatic flushing may be disabled andSSL_CTX_flush_sessions(3) can be called explicitly
by the application.

SSL_SESS_CACHE_NO_INTERNAL_LOOKUP
By setting this flag, session-resume operations in anSSL/TLSserver will not automatically look up
sessions in the internal cache, even if sessions are automatically stored there. If external session
caching callbacks are in use, this flag guarantees that all lookups are directed to the external cache.
As automatic lookup only applies forSSL/TLSservers, the flag has no effect on clients.

336 2002-10-29 0.9.7c

SSL_CTX_set_session_cache_mode(3) OpenSSL SSL_CTX_set_session_cache_mode(3)

SSL_SESS_CACHE_NO_INTERNAL_STORE
Depending on the presence ofSSL_SESS_CACHE_CLIENT and/or SSL_SESS_CACHE_SERVER,
sessions negotiated in anSSL/TLShandshake may be cached for possible reuse. Normally a new
session is added to the internal cache as well as any external session caching (callback) that is con-
figured for theSSL_CTX. This flag will prevent sessions being stored in the internal cache (though
the application can add them manually usingSSL_CTX_add_session(3)). Note: in anySSL/TLS
servers where external caching is configured, any successful session lookups in the external cache
(ie. for session-resume requests) would normally be copied into the local cache before processing
continues − this flag prevents these additions to the internal cache as well.

SSL_SESS_CACHE_NO_INTERNAL
Enable bothSSL_SESS_CACHE_NO_INTERNAL_LOOKUPand SSL_SESS_CACHE_NO_INTER-
NAL_STOREat the same time.

The default mode isSSL_SESS_CACHE_SERVER.

RETURN VALUES
SSL_CTX_set_session_cache_mode()returns the previously set cache mode.

SSL_CTX_get_session_cache_mode()returns the currently set cache mode.

SEE ALSO
ssl(3), SSL_set_session(3), SSL_session_reused(3), SSL_CTX_add_session(3), SSL_CTX_sess_num-
ber(3), SSL_CTX_sess_set_cache_size(3), SSL_CTX_sess_set_get_cb(3), SSL_CTX_set_ses-
sion_id_context(3), SSL_CTX_set_timeout(3), SSL_CTX_flush_sessions(3)

HISTORY
SSL_SESS_CACHE_NO_INTERNAL_STOREandSSL_SESS_CACHE_NO_INTERNALwere introduced in
OpenSSL 0.9.6h.

0.9.7c 2002-10-29 337

SSL_CTX_set_session_id_context(3) OpenSSL SSL_CTX_set_session_id_context(3)

NAME
SSL_CTX_set_session_id_context, SSL_set_session_id_context − set context within which session can
be reused (server side only)

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
unsigned int sid_ctx_len);

int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
unsigned int sid_ctx_len);

DESCRIPTION
SSL_CTX_set_session_id_context()sets the contextsid_ctx of lengthsid_ctx_lenwithin which a ses-
sion can be reused for thectx object.

SSL_set_session_id_context()sets the contextsid_ctx of lengthsid_ctx_lenwithin which a session can
be reused for thesslobject.

NOTES
Sessions are generated within a certain context. When exporting/importing sessions with
i2d_SSL_SESSION/d2i_SSL_SESSIONit would be possible, to re-import a session generated from
another context (e.g. another application), which might lead to malfunctions. Therefore each applica-
tion must set its own session id contextsid_ctx which is used to distinguish the contexts and is stored
in exported sessions. Thesid_ctxcan be any kind of binary data with a given length, it is therefore pos-
sible to use e.g. the name of the application and/or the hostname and/or service name ...

The session id context becomes part of the session. The session id context is set by theSSL/TLSserver.
TheSSL_CTX_set_session_id_context()andSSL_set_session_id_context()functions are therefore only
useful on the server side.

OpenSSL clients will check the session id context returned by the server when reusing a session.

The maximum length of thesid_ctx is limited toSSL_MAX_SSL_SESSION_ID_LENGTH.

WARNINGS
If the session id context is not set on anSSL/TLSserver, stored sessions will not be reused but a fatal
error will be flagged and the handshake will fail.

If a server returns a different session id context to an OpenSSL client when reusing a session, an error
will be flagged and the handshake will fail. OpenSSL servers will always return the correct session id
context, as an OpenSSL server checks the session id context itself before reusing a session as described
above.

RETURN VALUES
SSL_CTX_set_session_id_context()andSSL_set_session_id_context()return the following values:

• The lengthsid_ctx_lenof the session id contextsid_ctxexceeded the maximum allowed length of
SSL_MAX_SSL_SESSION_ID_LENGTH. The error is logged to the error stack.

1 The operation succeeded.

SEE ALSO
ssl(3)

338 2001-01-31 0.9.7c

SSL_CTX_set_ssl_version(3) OpenSSL SSL_CTX_set_ssl_version(3)

NAME
SSL_CTX_set_ssl_version, SSL_set_ssl_method, SSL_get_ssl_method − choose a new TLS/SSL
method

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_set_ssl_version(SSL_CTX *ctx, SSL_METHOD *method);
int SSL_set_ssl_method(SSL *s, SSL_METHOD *method);
SSL_METHOD *SSL_get_ssl_method(SSL *ssl);

DESCRIPTION
SSL_CTX_set_ssl_version()sets a new defaultTLS/SSL method for SSL objects newly created from
this ctx. SSL objects already created withSSL_new(3) are not affected, except whenSSL_clear(3) is
being called.

SSL_set_ssl_method()sets a newTLS/SSL method for a particularssl object. It may be reset, when
SSL_clear()is called.

SSL_get_ssl_method()returns a function pointer to theTLS/SSLmethod set inssl.

NOTES
The availablemethodchoices are described inSSL_CTX_new(3).

When SSL_clear(3) is called and no session is connected to anSSL object, the method of theSSL
object is reset to the method currently set in the correspondingSSL_CTXobject.

RETURN VALUES
The following return values can occur forSSL_CTX_set_ssl_version()andSSL_set_ssl_method():

• The new choice failed, check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
SSL_CTX_new(3), SSL_new(3), SSL_clear(3), ssl(3), SSL_set_connect_state(3)

0.9.7c 2001-03-08 339

SSL_CTX_set_timeout(3) OpenSSL SSL_CTX_set_timeout(3)

NAME
SSL_CTX_set_timeout, SSL_CTX_get_timeout − manipulate timeout values for session caching

SYNOPSIS
#include <openssl/ssl.h>

long SSL_CTX_set_timeout(SSL_CTX *ctx, long t);
long SSL_CTX_get_timeout(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_set_timeout()sets the timeout for newly created sessions forctx to t. The timeout valuet
must be given in seconds.

SSL_CTX_get_timeout()returns the currently set timeout value forctx.

NOTES
Whenever a new session is created, it is assigned a maximum lifetime. This lifetime is specified by
storing the creation time of the session and the timeout value valid at this time. If the actual time is later
than creation time plus timeout, the session is not reused.

Due to this realization, all sessions behave according to the timeout value valid at the time of the ses-
sion negotiation. Changes of the timeout value do not affect already established sessions.

The expiration time of a single session can be modified using theSSL_SESSION_get_time(3) family of
functions.

Expired sessions are removed from the internal session cache, wheneverSSL_CTX_flush_sessions(3) is
called, either directly by the application or automatically (seeSSL_CTX_set_session_cache_mode(3))

The default value for session timeout is decided on a per protocol basis, seeSSL_get_default_time-
out(3). All currently supported protocols have the same default timeout value of 300 seconds.

RETURN VALUES
SSL_CTX_set_timeout()returns the previously set timeout value.

SSL_CTX_get_timeout()returns the currently set timeout value.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_get_time(3), SSL_CTX_flush_ses-
sions(3), SSL_get_default_timeout(3)

340 2001-08-17 0.9.7c

SSL_CTX_set_tmp_dh_callback(3) OpenSSL SSL_CTX_set_tmp_dh_callback(3)

NAME
SSL_CTX_set_tmp_dh_callback, SSL_CTX_set_tmp_dh, SSL_set_tmp_dh_callback,
SSL_set_tmp_dh − handle DH keys for ephemeral key exchange

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

long SSL_CTX_set_tmp_dh(SSL_CTX *ctx, DH *dh);

void SSL_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

long SSL_set_tmp_dh(SSL *ssl, DH *dh)

DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));

DESCRIPTION
SSL_CTX_set_tmp_dh_callback()sets the callback function forctx to be used when aDH parameters
are required totmp_dh_callback. The callback is inherited by allsslobjects created fromctx.

SSL_CTX_set_tmp_dh()setsDH parameters to be used to bedh. The key is inherited by allsslobjects
created fromctx.

SSL_set_tmp_dh_callback()sets the callback only forssl.

SSL_set_tmp_dh()sets the parameters only forssl.

These functions apply toSSL/TLSservers only.

NOTES
When using a cipher withRSA authentication, an ephemeralDH key exchange can take place. Ciphers
with DSA keys always use ephemeralDH keys as well. In these cases, the session data are negotiated
using the ephemeral/temporaryDH key and the key supplied and certified by the certificate chain is
only used for signing. Anonymous ciphers (without a permanent server key) also use ephemeralDH
keys.

Using ephemeralDH key exchange yields forward secrecy, as the connection can only be decrypted,
when theDH key is known. By generating a temporaryDH key inside the server application that is lost
when the application is left, it becomes impossible for an attacker to decrypt past sessions, even if he
gets hold of the normal (certified) key, as this key was only used for signing.

In order to perform aDH key exchange the server must use aDH group (DH parameters) and generate a
DH key. The server will always generate a newDH key during the negotiation, when theDH parameters
are supplied via callback and/or when theSSL_OP_SINGLE_DH_USE option of
SSL_CTX_set_options(3) is set. It will immediately create aDH key, whenDH parameters are supplied
via SSL_CTX_set_tmp_dh()andSSL_OP_SINGLE_DH_USEis not set. In this case, it may happen that a
key is generated on initialization without later being needed, while on the other hand the computer time
during the negotiation is being saved.

If ‘‘strong’’ primes were used to generate theDH parameters, it is not strictly necessary to generate a
new key for each handshake but it does improve forward secrecy. If it is not assured, that ‘‘strong’’
primes were used (see especially the section aboutDSA parameters below),SSL_OP_SINGLE_DH_USE
must be used in order to prevent small subgroup attacks. Always usingSSL_OP_SINGLE_DH_USEhas
an impact on the computer time needed during negotiation, but it is not very large, so application
authors/users should consider to always enable this option.

As generatingDH parameters is extremely time consuming, an application should not generate the
parameters on the fly but supply the parameters.DH parameters can be reused, as the actual key is
newly generated during the negotiation. The risk in reusingDH parameters is that an attacker may spe-
cialize on a very often usedDH group. Applications should therefore generate their ownDH parameters
during the installation process using the openssldhparam(1) application. In order to reduce the com-
puter time needed for this generation, it is possible to useDSA parameters instead (seedhparam(1)),
but in this caseSSL_OP_SINGLE_DH_USEis mandatory.

Application authors may compile inDH parameters. Files dh512.pem, dh1024.pem, dh2048.pem, and

0.9.7c 2001-09-07 341

SSL_CTX_set_tmp_dh_callback(3) OpenSSL SSL_CTX_set_tmp_dh_callback(3)

dh4096 in the ’apps’ directory of current version of the OpenSSL distribution contain the ’SKIP’ DH
parameters, which use safe primes and were generated verifiably pseudo−randomly. These files can be
converted into C code using the−C option of thedhparam(1) application. Authors may also generate
their own set of parameters usingdhparam(1), but a user may not be sure how the parameters were
generated. The generation ofDH parameters during installation is therefore recommended.

An application may either directly specify theDH parameters or can supply theDH parameters via a
callback function. The callback approach has the advantage, that the callback may supplyDH parame-
ters for different key lengths.

The tmp_dh_callback is called with thekeylength needed and theis_export information. The
is_exportflag is set, when the ephemeralDH key exchange is performed with an export cipher.

EXAMPLES
HandleDH parameters for key lengths of 512 and 1024 bits. (Error handling partly left out.)

...
/* Set up ephemeral DH stuff */
DH *dh_512 = NULL;
DH *dh_1024 = NULL;
FILE *paramfile;

...
/* "openssl dhparam -out dh_param_512.pem -2 512" */
paramfile = fopen("dh_param_512.pem", "r");
if (paramfile) {

dh_512 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);

}
/* "openssl dhparam -out dh_param_1024.pem -2 1024" */
paramfile = fopen("dh_param_1024.pem", "r");
if (paramfile) {

dh_1024 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);

}
...

/* "openssl dhparam -C -2 512" etc... */
DH *get_dh512() { ... }
DH *get_dh1024() { ... }

DH *tmp_dh_callback(SSL *s, int is_export, int keylength)
{

DH *dh_tmp=NULL;

switch (keylength) {
case 512:

if (!dh_512)
dh_512 = get_dh512();

dh_tmp = dh_512;
break;

case 1024:
if (!dh_1024)

dh_1024 = get_dh1024();
dh_tmp = dh_1024;
break;

default:
/* Generating a key on the fly is very costly, so use what is there */
setup_dh_parameters_like_above();

}
return(dh_tmp);

}

342 2001-09-07 0.9.7c

SSL_CTX_set_tmp_dh_callback(3) OpenSSL SSL_CTX_set_tmp_dh_callback(3)

RETURN VALUES
SSL_CTX_set_tmp_dh_callback()andSSL_set_tmp_dh_callback()do not return diagnostic output.

SSL_CTX_set_tmp_dh()andSSL_set_tmp_dh()do return 1 on success and 0 on failure. Check the error
queue to find out the reason of failure.

SEE ALSO
ssl(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_tmp_rsa_callback(3), SSL_CTX_set_options(3),
ciphers(1), dhparam(1)

0.9.7c 2001-09-07 343

SSL_CTX_set_tmp_rsa_callback(3) OpenSSL SSL_CTX_set_tmp_rsa_callback(3)

NAME
SSL_CTX_set_tmp_rsa_callback, SSL_CTX_set_tmp_rsa, SSL_CTX_need_tmp_rsa,
SSL_set_tmp_rsa_callback, SSL_set_tmp_rsa, SSL_need_tmp_rsa − handle RSA keys for ephemeral
key exchange

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));

long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
long SSL_CTX_need_tmp_rsa(SSL_CTX *ctx);

void SSL_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));

long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
long SSL_need_tmp_rsa(SSL *ssl)

RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));

DESCRIPTION
SSL_CTX_set_tmp_rsa_callback()sets the callback function forctx to be used when a tempo-
rary/ephemeralRSA key is required totmp_rsa_callback. The callback is inherited by allSSLobjects
newly created fromctx with <SSL_new(3)SSL_new(3)>. Already createdSSL objects are not
affected.

SSL_CTX_set_tmp_rsa()sets the temporary/ephemeralRSA key to be used to bersa. The key is inher-
ited by allSSL objects newly created fromctx with <SSL_new(3)SSL_new(3)>. Already createdSSL
objects are not affected.

SSL_CTX_need_tmp_rsa()returns 1, if a temporary/ephemeralRSA key is needed for RSA-based
strength-limited ’exportable’ ciphersuites because aRSA key with a keysize larger than 512 bits is
installed.

SSL_set_tmp_rsa_callback()sets the callback only forssl.

SSL_set_tmp_rsa()sets the key only forssl.

SSL_need_tmp_rsa()returns 1, if a temporary/ephemeralRSA key is needed, for RSA-based strength-
limited ’exportable’ ciphersuites because aRSA key with a keysize larger than 512 bits is installed.

These functions apply toSSL/TLSservers only.

NOTES
When using a cipher withRSA authentication, an ephemeralRSA key exchange can take place. In this
case the session data are negotiated using the ephemeral/temporaryRSA key and theRSA key supplied
and certified by the certificate chain is only used for signing.

Under previous export restrictions, ciphers withRSA keys shorter (512 bits) than the usual key length
of 1024 bits were created. To use these ciphers withRSA keys of usual length, an ephemeral key
exchange must be performed, as the normal (certified) key cannot be directly used.

Using ephemeralRSA key exchange yields forward secrecy, as the connection can only be decrypted,
when theRSA key is known. By generating a temporaryRSA key inside the server application that is
lost when the application is left, it becomes impossible for an attacker to decrypt past sessions, even if
he gets hold of the normal (certified)RSA key, as this key was used for signing only. The downside is
that creating aRSA key is computationally expensive.

Additionally, the use of ephemeralRSA key exchange is only allowed in theTLS standard, when the
RSA key can be used for signing only, that is for export ciphers. Using ephemeralRSA key exchange
for other purposes violates the standard and can break interoperability with clients. It is therefore
strongly recommended to not use ephemeralRSA key exchange and useEDH (Ephemeral Diffie−Hell-
man) key exchange instead in order to achieve forward secrecy (seeSSL_CTX_set_tmp_dh_call-
back(3)).

On OpenSSL servers ephemeralRSA key exchange is therefore disabled by default and must be explic-
itly enabled using theSSL_OP_EPHEMERAL_RSAoption of SSL_CTX_set_options(3), violating the

344 2001-09-07 0.9.7c

SSL_CTX_set_tmp_rsa_callback(3) OpenSSL SSL_CTX_set_tmp_rsa_callback(3)

TLS/SSLstandard. When ephemeralRSA key exchange is required for export ciphers, it will automati-
cally be used without this option!

An application may either directly specify the key or can supply the key via a callback function. The
callback approach has the advantage, that the callback may generate the key only in case it is actually
needed. As the generation of aRSA key is howev er costly, it will lead to a significant delay in the hand-
shake procedure. Another advantage of the callback function is that it can supply keys of different size
(e.g. forSSL_OP_EPHEMERAL_RSAusage) while the explicit setting of the key is only useful for key
size of 512 bits to satisfy the export restricted ciphers and does give away key length if a longer key
would be allowed.

The tmp_rsa_callback is called with thekeylength needed and theis_export information. The
is_exportflag is set, when the ephemeralRSA key exchange is performed with an export cipher.

EXAMPLES
Generate temporaryRSA keys to prepare ephemeralRSA key exchange. As the generation of aRSA key
costs a lot of computer time, they sav ed for later reuse. For demonstration purposes, two keys for 512
bits and 1024 bits respectively are generated.

...
/* Set up ephemeral RSA stuff */
RSA *rsa_512 = NULL;
RSA *rsa_1024 = NULL;

rsa_512 = RSA_generate_key(512,RSA_F4,NULL,NULL);
if (rsa_512 == NULL)

evaluate_error_queue();

rsa_1024 = RSA_generate_key(1024,RSA_F4,NULL,NULL);
if (rsa_1024 == NULL)

evaluate_error_queue();

...

RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)
{

RSA *rsa_tmp=NULL;

switch (keylength) {
case 512:

if (rsa_512)
rsa_tmp = rsa_512;

else { /* generate on the fly, should not happen in this example */
rsa_tmp = RSA_generate_key(keylength,RSA_F4,NULL,NULL);
rsa_512 = rsa_tmp; /* Remember for later reuse */

}
break;

case 1024:
if (rsa_1024)

rsa_tmp=rsa_1024;
else

should_not_happen_in_this_example();
break;

default:
/* Generating a key on the fly is very costly, so use what is there */
if (rsa_1024)

rsa_tmp=rsa_1024;
else

rsa_tmp=rsa_512; /* Use at least a shorter key */
}
return(rsa_tmp);

}

0.9.7c 2001-09-07 345

SSL_CTX_set_tmp_rsa_callback(3) OpenSSL SSL_CTX_set_tmp_rsa_callback(3)

RETURN VALUES
SSL_CTX_set_tmp_rsa_callback()andSSL_set_tmp_rsa_callback()do not return diagnostic output.

SSL_CTX_set_tmp_rsa()and SSL_set_tmp_rsa()do return 1 on success and 0 on failure. Check the
error queue to find out the reason of failure.

SSL_CTX_need_tmp_rsa()andSSL_need_tmp_rsa()return 1 if a temporaryRSA key is needed and 0
otherwise.

SEE ALSO
ssl(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_options(3), SSL_CTX_set_tmp_dh_callback(3),
SSL_new (3), ciphers(1)

346 2001-09-07 0.9.7c

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

NAME
SSL_CTX_set_verify, SSL_set_verify, SSL_CTX_set_verify_depth, SSL_set_verify_depth − set peer
certificate verification parameters

SYNOPSIS
#include <openssl/ssl.h>

void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*verify_callback)(int, X509_STORE_CTX *));

void SSL_set_verify(SSL *s, int mode,
int (*verify_callback)(int, X509_STORE_CTX *));

void SSL_CTX_set_verify_depth(SSL_CTX *ctx,int depth);
void SSL_set_verify_depth(SSL *s, int depth);

int verify_callback(int preverify_ok, X509_STORE_CTX *x509_ctx);

DESCRIPTION
SSL_CTX_set_verify()sets the verification flags forctx to bemode and specifies theverify_callback
function to be used. If no callback function shall be specified, theNULL pointer can be used forver-
ify_callback.

SSL_set_verify()sets the verification flags forsslto bemodeand specifies theverify_callback function
to be used. If no callback function shall be specified, theNULL pointer can be used forverify_call-
back. In this case lastverify_callback set specifically for thisssl remains. If no specialcallback was
set before, the default callback for the underlyingctx is used, that was valid at the the timesslwas cre-
ated withSSL_new(3).

SSL_CTX_set_verify_depth()sets the maximumdepth for the certificate chain verification that shall be
allowed forctx. (See theBUGSsection.)

SSL_set_verify_depth()sets the maximumdepth for the certificate chain verification that shall be
allowed forssl. (See theBUGSsection.)

NOTES
The verification of certificates can be controlled by a set of logically or’edmodeflags:

SSL_VERIFY_NONE
Server mode:the server will not send a client certificate request to the client, so the client will not
send a certificate.

Client mode: if not using an anonymous cipher (by default disabled), the server will send a cer-
tificate which will be checked. The result of the certificate verification process can be checked
after theTLS/SSLhandshake using theSSL_get_verify_result(3) function. The handshake will be
continued regardless of the verification result.

SSL_VERIFY_PEER
Server mode:the server sends a client certificate request to the client. The certificate returned (if
any) is checked. If the verification process fails, theTLS/SSLhandshake is immediately terminated
with an alert message containing the reason for the verification failure. The behaviour can be con-
trolled by the additional SSL_VERIFY_FAIL_IF_NO_PEER_CERT and SSL_VER-
IFY_CLIENT_ONCEflags.

Client mode: the server certificate is verified. If the verification process fails, theTLS/SSLhand-
shake is immediately terminated with an alert message containing the reason for the verification
failure. If no server certificate is sent, because an anonymous cipher is used,SSL_VERIFY_PEERis
ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT
Server mode:if the client did not return a certificate, theTLS/SSLhandshake is immediately ter-
minated with a ‘‘handshake failure’’ alert. This flag must be used together withSSL_VER-
IFY_PEER.

Client mode: ignored

0.9.7c 2003-06-26 347

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

SSL_VERIFY_CLIENT_ONCE
Server mode:only request a client certificate on the initialTLS/SSLhandshake. Do not ask for a
client certificate again in case of a renegotiation. This flag must be used together withSSL_VER-
IFY_PEER.

Client mode: ignored

Exactly one of themodeflagsSSL_VERIFY_NONEandSSL_VERIFY_PEERmust be set at any time.

The actual verification procedure is performed either using the built-in verification procedure or using
another application provided verification function set withSSL_CTX_set_cert_verify_callback(3). The
following descriptions apply in the case of the built-in procedure. An application provided procedure
also has access to the verify depth information and theverify_callback()function, but the way this
information is used may be different.

SSL_CTX_set_verify_depth()andSSL_set_verify_depth()set the limit up to which depth certificates in
a chain are used during the verification procedure. If the certificate chain is longer than allowed, the
certificates above the limit are ignored. Error messages are generated as if these certificates would not
be present, most likely a X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY will be
issued. The depth count is ‘‘level 0:peer certificate’’, ‘‘level 1:CA certificate’’, ‘‘level 2: higher level
CA certificate’’, and so on. Setting the maximum depth to 2 allows the levels 0, 1, and 2. The default
depth limit is 9, allowing for the peer certificate and additional 9CA certificates.

Theverify_callback function is used to control the behaviour when theSSL_VERIFY_PEERflag is set.
It must be supplied by the application and receives two arguments:prev erify_ok indicates, whether the
verification of the certificate in question was passed (preverify_ok=1) or not (preverify_ok=0).
x509_ctxis a pointer to the complete context used for the certificate chain verification.

The certificate chain is checked starting with the deepest nesting level (the rootCA certificate) and
worked upward to the peer’s certificate. At each level signatures and issuer attributes are checked.
Whenever a verification error is found, the error number is stored inx509_ctxandverify_callback is
called with prev erify_ok=0. By applying X509_CTX_store_* functionsverify_callback can locate
the certificate in question and perform additional steps (seeEXAMPLES). If no error is found for a cer-
tificate,verify_callback is called withprev erify_ok=1 before advancing to the next level.

The return value ofverify_callback controls the strategy of the further verification process. Ifver-
ify_callback returns 0, the verification process is immediately stopped with ‘‘verification failed’’ state.
If SSL_VERIFY_PEERis set, a verification failure alert is sent to the peer and theTLS/SSLhandshake is
terminated. Ifverify_callback returns 1, the verification process is continued. Ifverify_callback
always returns 1, theTLS/SSLhandshake will not be terminated with respect to verification failures and
the connection will be established. The calling process can however retrieve the error code of the last
verification error usingSSL_get_verify_result(3) or by maintaining its own error storage managed by
verify_callback.

If no verify_callback is specified, the default callback will be used. Its return value is identical topre-
verify_ok, so that any verification failure will lead to a termination of theTLS/SSLhandshake with an
alert message, ifSSL_VERIFY_PEERis set.

BUGS
In client mode, it is not checked whether theSSL_VERIFY_PEERflag is set, but whetherSSL_VER-
IFY_NONE is not set. This can lead to unexpected behaviour, if theSSL_VERIFY_PEERandSSL_VER-
IFY_NONE are not used as required (exactly one must be set at any time).

The certificate verification depth set with SSL[_CTX]_verify_depth()stops the verification at a certain
depth. The error message produced will be that of an incomplete certificate chain and not
X509_V_ERR_CERT_CHAIN_TOO_LONG as may be expected.

RETURN VALUES
The SSL*_set_verify*() functions do not provide diagnostic information.

EXAMPLES
The following code sequence realizes an exampleverify_callback function that will always continue
theTLS/SSLhandshake reg ardless of verification failure, if wished. The callback realizes a verification
depth limit with more informational output.

All verification errors are printed, informations about the certificate chain are printed on request. The

348 2003-06-26 0.9.7c

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

example is realized for a server that does allow but not require client certificates.

The example makes use of the ex_data technique to store application data into/retrieve application data
from theSSL structure (seeSSL_get_ex_new_index(3), SSL_get_ex_data_X509_STORE_CTX_idx(3)).

...
typedef struct {

int verbose_mode;
int verify_depth;
int always_continue;

} mydata_t;
int mydata_index;
...
static int verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
{

char buf[256];
X509 *err_cert;
int err, depth;
SSL *ssl;
mydata_t *mydata;

err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);

/*
* Retrieve the pointer to the SSL of the connection currently treated
* and the application specific data stored into the SSL object.
*/

ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
mydata = SSL_get_ex_data(ssl, mydata_index);

X509_NAME_oneline(X509_get_subject_name(err_cert), buf, 256);

/*
* Catch a too long certificate chain. The depth limit set using
* SSL_CTX_set_verify_depth() is by purpose set to "limit+1" so
* that whenever the "depth>verify_depth" condition is met, we
* have violated the limit and want to log this error condition.
* We must do it here, because the CHAIN_TOO_LONG error would not
* be found explicitly; only errors introduced by cutting off the
* additional certificates would be logged.
*/

if (depth > mydata->verify_depth) {
preverify_ok = 0;
err = X509_V_ERR_CERT_CHAIN_TOO_LONG;
X509_STORE_CTX_set_error(ctx, err);

}
if (!preverify_ok) {

printf("verify error:num=%d:%s:depth=%d:%s\n", err,
X509_verify_cert_error_string(err), depth, buf);

}
else if (mydata->verbose_mode)
{

printf("depth=%d:%s\n", depth, buf);
}

0.9.7c 2003-06-26 349

SSL_CTX_set_verify(3) OpenSSL SSL_CTX_set_verify(3)

/*
* At this point, err contains the last verification error. We can use
* it for something special
*/

if (!preverify_ok && (err == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT))
{

X509_NAME_oneline(X509_get_issuer_name(ctx->current_cert), buf, 256);
printf("issuer= %s\n", buf);

}

if (mydata->always_continue)
return 1;

else
return preverify_ok;

}
...

mydata_t mydata;

...
mydata_index = SSL_get_ex_new_index(0, "mydata index", NULL, NULL, NULL);

...
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER SSL_VERIFY_CLIENT_ONCE,

verify_callback);

/*
* Let the verify_callback catch the verify_depth error so that we get
* an appropriate error in the logfile.
*/

SSL_CTX_set_verify_depth(verify_depth + 1);

/*
* Set up the SSL specific data into "mydata" and store it into th SSL
* structure.
*/

mydata.verify_depth = verify_depth; ...
SSL_set_ex_data(ssl, mydata_index, &mydata);

...
SSL_accept(ssl); /* check of success left out for clarity */
if (peer = SSL_get_peer_certificate(ssl))
{

if (SSL_get_verify_result(ssl) == X509_V_OK)
{

/* The client sent a certificate which verified OK */
}

}

SEE ALSO
ssl(3), SSL_new(3), SSL_CTX_get_verify_mode(3), SSL_get_verify_result(3), SSL_CTX_load_ver-
ify_locations(3), SSL_get_peer_certificate(3), SSL_CTX_set_cert_verify_callback(3),
SSL_get_ex_data_X509_STORE_CTX_idx(3), SSL_get_ex_new_index(3)

350 2003-06-26 0.9.7c

SSL_CTX_use_certificate(3) OpenSSL SSL_CTX_use_certificate(3)

NAME
SSL_CTX_use_certificate, SSL_CTX_use_certificate_ASN1, SSL_CTX_use_certificate_file,
SSL_use_certificate, SSL_use_certificate_ASN1, SSL_use_certificate_file, SSL_CTX_use_certifi-
cate_chain_file, SSL_CTX_use_PrivateKey, SSL_CTX_use_PrivateKey_ASN1, SSL_CTX_use_Pri-
vateKey_file, SSL_CTX_use_RSAPrivateKey, SSL_CTX_use_RSAPrivateKey_ASN1,
SSL_CTX_use_RSAPrivateKey_file, SSL_use_PrivateKey_file, SSL_use_PrivateKey_ASN1,
SSL_use_PrivateKey, SSL_use_RSAPrivateKey, SSL_use_RSAPrivateKey_ASN1, SSL_use_RSAPri-
vateKey_file, SSL_CTX_check_private_key, SSL_check_private_key − load certificate and key data

SYNOPSIS
#include <openssl/ssl.h>

int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x);
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, unsigned char *d);
int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type);
int SSL_use_certificate(SSL *ssl, X509 *x);
int SSL_use_certificate_ASN1(SSL *ssl, unsigned char *d, int len);
int SSL_use_certificate_file(SSL *ssl, const char *file, int type);

int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file);

int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);
int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, unsigned char *d,

long len);
int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type);
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, unsigned char *d, long len);
int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type);
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);
int SSL_use_PrivateKey_ASN1(int pk,SSL *ssl, unsigned char *d, long len);
int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type);
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, unsigned char *d, long len);
int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type);

int SSL_CTX_check_private_key(SSL_CTX *ctx);
int SSL_check_private_key(SSL *ssl);

DESCRIPTION
These functions load the certificates and private keys into theSSL_CTXor SSLobject, respectively.

The SSL_CTX_* class of functions loads the certificates and keys into theSSL_CTX objectctx. The
information is passed toSSLobjectssslcreated fromctx with SSL_new(3) by copying, so that changes
applied toctx do not propagate to already existingSSLobjects.

The SSL_* class of functions only loads certificates and keys into a specificSSL object. The specific
information is kept, whenSSL_clear(3) is called for thisSSLobject.

SSL_CTX_use_certificate()loads the certificatex into ctx, SSL_use_certificate()loadsx into ssl. The
rest of the certificates needed to form the complete certificate chain can be specified using the
SSL_CTX_add_extra_chain_cert(3) function.

SSL_CTX_use_certificate_ASN1()loads theASN1 encoded certificate from the memory locationd
(with lengthlen) intoctx, SSL_use_certificate_ASN1()loads theASN1 encoded certificate intossl.

SSL_CTX_use_certificate_file()loads the first certificate stored infile into ctx. The formattingtype of
the certificate must be specified from the known typesSSL_FILETYPE_PEM, SSL_FILETYPE_ASN1.
SSL_use_certificate_file()loads the certificate fromfile into ssl. See theNOTES section on why
SSL_CTX_use_certificate_chain_file()should be preferred.

SSL_CTX_use_certificate_chain_file()loads a certificate chain fromfile into ctx. The certificates must
be inPEM format and must be sorted starting with the subject’s certificate (actual client or server cer-
tificate), followed by intermediateCA certificates if applicable, and ending at the highest level (root)
CA. There is no corresponding function working on a singleSSLobject.

0.9.7c 2003-05-30 351

SSL_CTX_use_certificate(3) OpenSSL SSL_CTX_use_certificate(3)

SSL_CTX_use_PrivateKey()addspkey as private key toctx. SSL_CTX_use_RSAPrivateKey()adds the
private key rsa of type RSA to ctx. SSL_use_PrivateKey()adds pkey as private key tossl;
SSL_use_RSAPrivateKey()addsrsa as private key of typeRSA to ssl.

SSL_CTX_use_PrivateKey_ASN1()adds the private key of typepk stored at memory locationd (length
len) to ctx. SSL_CTX_use_RSAPrivateKey_ASN1()adds the private key of typeRSA stored at memory
locationd (lengthlen) to ctx. SSL_use_PrivateKey_ASN1()andSSL_use_RSAPrivateKey_ASN1()add
the private key tossl.

SSL_CTX_use_PrivateKey_file()adds the first private key found infile to ctx. The formattingtype of
the certificate must be specified from the known typesSSL_FILETYPE_PEM, SSL_FILETYPE_ASN1.
SSL_CTX_use_RSAPrivateKey_file()adds the first privateRSA key found infile to ctx. SSL_use_Pri-
vateKey_file()adds the first private key found infile to ssl; SSL_use_RSAPrivateKey_file()adds the first
privateRSA key found tossl.

SSL_CTX_check_private_key()checks the consistency of a private key with the corresponding certifi-
cate loaded intoctx. If more than one key/certificate pair (RSA/DSA) is installed, the last item installed
will be checked. If e.g. the last item was aRSA certificate or key, theRSA key/certificate pair will be
checked.SSL_check_private_key()performs the same check forssl. If no key/certificate was explicitly
added for thisssl, the last item added intoctx will be checked.

NOTES
The internal certificate store of OpenSSL can hold two private key/certificate pairs at a time: one
key/certificate of typeRSA and one key/certificate of typeDSA. The certificate used depends on the
cipher select, see alsoSSL_CTX_set_cipher_list(3).

When reading certificates and private keys from file, files of typeSSL_FILETYPE_ASN1(also known as
DER, binary encoding) can only contain one certificate or private key, consequentlySSL_CTX_use_cer-
tificate_chain_file()is only applicable toPEM formatting. Files of typeSSL_FILETYPE_PEMcan con-
tain more than one item.

SSL_CTX_use_certificate_chain_file()adds the first certificate found in the file to the certificate store.
The other certificates are added to the store of chain certificates using
SSL_CTX_add_extra_chain_cert(3). There exists only one extra chain store, so that the same chain is
appended to both types of certificates,RSA andDSA! If it is not intended to use both type of certificate
at the same time, it is recommended to use theSSL_CTX_use_certificate_chain_file()instead of the
SSL_CTX_use_certificate_file()function in order to allow the use of complete certificate chains even
when no trustedCA storage is used or when theCA issuing the certificate shall not be added to the
trustedCA storage.

If additional certificates are needed to complete the chain during theTLS negotiation,CA certificates
are additionally looked up in the locations of trustedCA certificates, seeSSL_CTX_load_verify_loca-
tions(3).

The private keys loaded from file can be encrypted. In order to successfully load encrypted keys, a
function returning the passphrase must have been supplied, seeSSL_CTX_set_default_passwd_cb(3).
(Certificate files might be encrypted as well from the technical point of view, it howev er does not make
sense as the data in the certificate is considered public anyway.)

RETURN VALUES
On success, the functions return 1. Otherwise check out the error stack to find out the reason.

SEE ALSO
ssl(3), SSL_new(3), SSL_clear(3), SSL_CTX_load_verify_locations(3),
SSL_CTX_set_default_passwd_cb(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_client_cert_cb(3),
SSL_CTX_add_extra_chain_cert(3)

352 2003-05-30 0.9.7c

SSL_do_handshake(3) OpenSSL SSL_do_handshake(3)

NAME
SSL_do_handshake − perform a TLS/SSL handshake

SYNOPSIS
#include <openssl/ssl.h>

int SSL_do_handshake(SSL *ssl);

DESCRIPTION
SSL_do_handshake()will wait for a SSL/TLS handshake to take place. If the connection is in client
mode, the handshake will be started. The handshake routines may have to be explicitly set in advance
using eitherSSL_set_connect_state(3) orSSL_set_accept_state(3).

NOTES
The behaviour ofSSL_do_handshake()depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_do_handshake()will only return once the handshake has been
finished or an error occurred, except forSGC (Server Gated Cryptography). ForSGC, SSL_do_hand-
shake()may return with −1, butSSL_get_error()will yield SSL_ERROR_WANT_READ/WRITE and
SSL_do_handshake()should be called again.

If the underlyingBIO is non-blocking, SSL_do_handshake()will also return when the underlyingBIO
could not satisfy the needs ofSSL_do_handshake()to continue the handshake. In this case a call to
SSL_get_error()with the return value ofSSL_do_handshake()will yield SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE. The calling process then must repeat the call after taking appropriate
action to satisfy the needs ofSSL_do_handshake(). The action depends on the underlyingBIO. When
using a non-blocking socket, nothing is to be done, butselect()can be used to check for the required
condition. When using a bufferingBIO, like aBIO pair, data must be written into or retrieved out of the
BIO before being able to continue.

RETURN VALUES
The following return values can occur:

1 TheTLS/SSLhandshake was successfully completed, aTLS/SSLconnection has been established.

• TheTLS/SSLhandshake was not successful but was shut down controlled and by the specifications
of theTLS/SSLprotocol. CallSSL_get_error()with the return valueret to find out the reason.

<0 TheTLS/SSL handshake was not successful because a fatal error occurred either at the protocol
level or a connection failure occurred. The shutdown was not clean. It can also occur of action is
need to continue the operation for non-blocking BIOs. CallSSL_get_error()with the return value
ret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_connect(3), SSL_accept(3), ssl(3), bio (3), SSL_set_connect_state(3)

0.9.7c 2002-07-19 353

SSL_free(3) OpenSSL SSL_free(3)

NAME
SSL_free − free an allocated SSL structure

SYNOPSIS
#include <openssl/ssl.h>

void SSL_free(SSL *ssl);

DESCRIPTION
SSL_free()decrements the reference count ofssl, and removes theSSL structure pointed to byssl and
frees up the allocated memory if the the reference count has reached 0.

NOTES
SSL_free()also calls thefree()ing procedures for indirectly affected items, if applicable: the buffering
BIO, the read and write BIOs, cipher lists specially created for thisssl, theSSL_SESSION. Do not
explicitly free these indirectly freed up items before or after callingSSL_free(), as trying to free things
twice may lead to program failure.

The ssl session has reference counts from two users: theSSL object, for which the reference count is
removed bySSL_free()and the internal session cache. If the session is considered bad, because
SSL_shutdown(3) was not called for the connection andSSL_set_shutdown(3) was not used to set the
SSL_SENT_SHUTDOWNstate, the session will also be removed from the session cache as required by
RFC2246.

RETURN VALUES
SSL_free()does not provide diagnostic information.

SSL_new(3), SSL_clear(3), SSL_shutdown(3), SSL_set_shutdown(3), ssl(3)

354 2001-02-13 0.9.7c

SSL_get_ciphers(3) OpenSSL SSL_get_ciphers(3)

NAME
SSL_get_ciphers, SSL_get_cipher_list − get list of available SSL_CIPHERs

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(SSL_CIPHER) *SSL_get_ciphers(SSL *ssl);
const char *SSL_get_cipher_list(SSL *ssl, int priority);

DESCRIPTION
SSL_get_ciphers()returns the stack of available SSL_CIPHERs forssl, sorted by preference. Ifssl is
NULL or no ciphers are available,NULL is returned.

SSL_get_cipher_list()returns a pointer to the name of theSSL_CIPHERlisted forssl with priority. If
ssl is NULL, no ciphers are available, or there are less ciphers thanpriority available,NULL is returned.

NOTES
The details of the ciphers obtained bySSL_get_ciphers()can be obtained using the
SSL_CIPHER_get_name(3) family of functions.

Call SSL_get_cipher_list()with priority starting from 0 to obtain the sorted list of available ciphers,
until NULL is returned.

RETURN VALUES
SeeDESCRIPTION

SEE ALSO
ssl(3), SSL_CTX_set_cipher_list(3), SSL_CIPHER_get_name(3)

0.9.7c 2000-09-18 355

SSL_get_client_CA_list(3) OpenSSL SSL_get_client_CA_list(3)

NAME
SSL_get_client_CA_list, SSL_CTX_get_client_CA_list − get list of client CAs

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_get_client_CA_list(SSL *s);
STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(SSL_CTX *ctx);

DESCRIPTION
SSL_CTX_get_client_CA_list()returns the list of client CAs explicitly set forctx using
SSL_CTX_set_client_CA_list(3).

SSL_get_client_CA_list() returns the list of client CAs explicitly set forssl using
SSL_set_client_CA_list()or ssl’s SSL_CTX object with SSL_CTX_set_client_CA_list(3), when in
server mode. In client mode, SSL_get_client_CA_list returns the list of client CAs sent from the server,
if any.

RETURN VALUES
SSL_CTX_set_client_CA_list()andSSL_set_client_CA_list()do not return diagnostic information.

SSL_CTX_add_client_CA()andSSL_add_client_CA()have the following return values:

STACK_OF(X509_NAMES)
List of CA names explicitly set (forctx or in server mode) or send by the server (client mode).

NULL
No clientCA list was explicitly set (forctx or in server mode) or the server did not send a list of
CAs (client mode).

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_list(3), SSL_CTX_set_client_cert_cb(3)

356 2002-02-15 0.9.7c

SSL_get_current_cipher(3) OpenSSL SSL_get_current_cipher(3)

NAME
SSL_get_current_cipher, SSL_get_cipher, SSL_get_cipher_name, SSL_get_cipher_bits,
SSL_get_cipher_version − get SSL_CIPHER of a connection

SYNOPSIS
#include <openssl/ssl.h>

SSL_CIPHER *SSL_get_current_cipher(SSL *ssl);
#define SSL_get_cipher(s) \

SSL_CIPHER_get_name(SSL_get_current_cipher(s))
#define SSL_get_cipher_name(s) \

SSL_CIPHER_get_name(SSL_get_current_cipher(s))
#define SSL_get_cipher_bits(s,np) \

SSL_CIPHER_get_bits(SSL_get_current_cipher(s),np)
#define SSL_get_cipher_version(s) \

SSL_CIPHER_get_version(SSL_get_current_cipher(s))

DESCRIPTION
SSL_get_current_cipher()returns a pointer to anSSL_CIPHERobject containing the description of the
actually used cipher of a connection established with thesslobject.

SSL_get_cipher()andSSL_get_cipher_name()are identical macros to obtain the name of the currently
used cipher.SSL_get_cipher_bits()is a macro to obtain the number of secret/algorithm bits used and
SSL_get_cipher_version()returns the protocol name. SeeSSL_CIPHER_get_name(3) for more details.

RETURN VALUES
SSL_get_current_cipher()returns the cipher actually used orNULL, when no session has been estab-
lished.

SEE ALSO
ssl(3), SSL_CIPHER_get_name(3)

0.9.7c 2000-09-18 357

SSL_get_default_timeout(3) OpenSSL SSL_get_default_timeout(3)

NAME
SSL_get_default_timeout − get default session timeout value

SYNOPSIS
#include <openssl/ssl.h>

long SSL_get_default_timeout(SSL *ssl);

DESCRIPTION
SSL_get_default_timeout()returns the default timeout value assigned toSSL_SESSIONobjects negoti-
ated for the protocol valid forssl.

NOTES
Whenever a new session is negotiated, it is assigned a timeout value, after which it will not be accepted
for session reuse. If the timeout value was not explicitly set usingSSL_CTX_set_timeout(3), the hard-
coded default timeout for the protocol will be used.

SSL_get_default_timeout()return this hardcoded value, which is 300 seconds for all currently sup-
ported protocols (SSLv2, SSLv3, and TLSv1).

RETURN VALUES
See description.

SEE ALSO
ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_get_time(3), SSL_CTX_flush_ses-
sions(3), SSL_get_default_timeout(3)

358 2001-08-17 0.9.7c

SSL_get_error(3) OpenSSL SSL_get_error(3)

NAME
SSL_get_error − obtain result code for TLS/SSL I/O operation

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_error(SSL *ssl, int ret);

DESCRIPTION
SSL_get_error()returns a result code (suitable for the C ‘‘switch’’ statement) for a preceding call to
SSL_connect(), SSL_accept(), SSL_do_handshake(), SSL_read(), SSL_peek(), orSSL_write()on ssl.
The value returned by thatTLS/SSLI/O function must be passed toSSL_get_error()in parameterret.

In addition tossl and ret, SSL_get_error()inspects the current thread’s OpenSSL error queue. Thus,
SSL_get_error()must be used in the same thread that performed theTLS/SSL I/O operation, and no
other OpenSSL function calls should appear in between. The current thread’s error queue must be
empty before theTLS/SSLI/O operation is attempted, orSSL_get_error()will not work reliably.

RETURN VALUES
The following return values can currently occur:

SSL_ERROR_NONE
TheTLS/SSLI/O operation completed. This result code is returned if and only ifret > 0.

SSL_ERROR_ZERO_RETURN
TheTLS/SSLconnection has been closed. If the protocol version isSSL3.0 orTLS 1.0, this result
code is returned only if a closure alert has occurred in the protocol, i.e. if the connection has been
closed cleanly. Note that in this caseSSL_ERROR_ZERO_RETURNdoes not necessarily indicate
that the underlying transport has been closed.

SSL_ERROR_WANT_READ, SSL_ERROR_WANT_WRITE
The operation did not complete; the sameTLS/SSLI/O function should be called again later. If, by
then, the underlying BIO has data available for reading (if the result code is
SSL_ERROR_WANT_READ) or allows writing data (SSL_ERROR_WANT_WRITE), then some
TLS/SSL protocol progress will take place, i.e. at least part of anTLS/SSL record will be read or
written. Note that the retry may again lead to aSSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE condition. There is no fixed upper limit for the number of iterations
that may be necessary until progress becomes visible at application protocol level.

For socketBIOs (e.g. whenSSL_set_fd()was used),select()or poll() on the underlying socket can
be used to find out when theTLS/SSLI/O function should be retried.

Caveat: Any TLS/SSL I/O function can lead to either ofSSL_ERROR_WANT_READ and
SSL_ERROR_WANT_WRITE. In particular,SSL_read()or SSL_peek()may want to write data
andSSL_write()may want to read data. This is mainly becauseTLS/SSLhandshakes may occur at
any time during the protocol (initiated by either the client or the server);SSL_read(),SSL_peek(),
andSSL_write()will handle any pending handshakes.

SSL_ERROR_WANT_CONNECT, SSL_ERROR_WANT_ACCEPT
The operation did not complete; the sameTLS/SSLI/O function should be called again later. The
underlyingBIO was not connected yet to the peer and the call would block inconnect()/accept().
The SSL function should be called again when the connection is established. These messages can
only appear with aBIO_s_connect()or BIO_s_accept()BIO, respectively. In order to find out,
when the connection has been successfully established, on many platformsselect()or poll() for
writing on the socket file descriptor can be used.

SSL_ERROR_WANT_X509_LOOKUP
The operation did not complete because an application callback set by
SSL_CTX_set_client_cert_cb()has asked to be called again. TheTLS/SSLI/O function should be
called again later. Details depend on the application.

SSL_ERROR_SYSCALL
Some I/O error occurred. The OpenSSL error queue may contain more information on the error.
If the error queue is empty (i.e.ERR_get_error()returns 0),ret can be used to find out more about
the error: Ifret == 0, anEOFwas observed that violates the protocol. Ifret == −1, the underlying

0.9.7c 2002-07-29 359

SSL_get_error(3) OpenSSL SSL_get_error(3)

BIO reported an I/O error (for socket I/O on Unix systems, consulterrno for details).

SSL_ERROR_SSL
A failure in theSSL library occurred, usually a protocol error. The OpenSSL error queue contains
more information on the error.

SEE ALSO
ssl(3), err (3)

HISTORY
SSL_get_error()was added in SSLeay 0.8.

360 2002-07-29 0.9.7c

SSL_get_ex_data_X509_STORE_CTX_idx(3) OpenSSL SSL_get_ex_data_X509_STORE_CTX_idx(3)

NAME
SSL_get_ex_data_X509_STORE_CTX_idx − get ex_data index to access SSL structure from
X509_STORE_CTX

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_ex_data_X509_STORE_CTX_idx(void);

DESCRIPTION
SSL_get_ex_data_X509_STORE_CTX_idx()returns the index number under which the pointer to the
SSLobject is stored into the X509_STORE_CTX object.

NOTES
Whenever a X509_STORE_CTX object is created for the verification of the peers certificate during a
handshake, a pointer to theSSLobject is stored into the X509_STORE_CTX object to identify the con-
nection affected. To retrieve this pointer theX509_STORE_CTX_get_ex_data()function can be used
with the correct index. This index is globally the same for all X509_STORE_CTX objects and can be
retrieved using SSL_get_ex_data_X509_STORE_CTX_idx(). The index value is set when
SSL_get_ex_data_X509_STORE_CTX_idx()is first called either by the application program directly or
indirectly during otherSSLsetup functions or during the handshake.

The value depends on other index values defined for X509_STORE_CTX objects before theSSL index
is created.

RETURN VALUES
>=0

The index value to access the pointer.

<0 An error occurred, check the error stack for a detailed error message.

EXAMPLES
The index returned fromSSL_get_ex_data_X509_STORE_CTX_idx()allows to access theSSL object
for the connection to be accessed during theverify_callback()when checking the peers certificate.
Please check the example inSSL_CTX_set_verify(3),

SEE ALSO
ssl(3), SSL_CTX_set_verify(3), CRYPTO_set_ex_data(3)

0.9.7c 2001-01-20 361

SSL_get_ex_new_index(3) OpenSSL SSL_get_ex_new_index(3)

NAME
SSL_get_ex_new_index, SSL_set_ex_data, SSL_get_ex_data − internal application specific data func-
tions

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int SSL_set_ex_data(SSL *ssl, int idx, void *arg);

void *SSL_get_ex_data(SSL *ssl, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_get_ex_new_index()is used to register a new index for application specific data.

SSL_set_ex_data()is used to store application data atarg for idx into thesslobject.

SSL_get_ex_data()is used to retrieve the information foridx from ssl.

A detailed description for the *_get_ex_new_index() functionality can be found in
RSA_get_ex_new_index(3). The *_get_ex_data() and *_set_ex_data() functionality is described in
CRYPTO_set_ex_data(3).

EXAMPLES
An example on how to use the functionality is included in the exampleverify_callback() in
SSL_CTX_set_verify(3).

SEE ALSO
ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3), SSL_CTX_set_verify(3)

362 2001-05-14 0.9.7c

SSL_get_fd(3) OpenSSL SSL_get_fd(3)

NAME
SSL_get_fd − get file descriptor linked to an SSL object

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_fd(SSL *ssl);
int SSL_get_rfd(SSL *ssl);
int SSL_get_wfd(SSL *ssl);

DESCRIPTION
SSL_get_fd()returns the file descriptor which is linked tossl. SSL_get_rfd()andSSL_get_wfd()return
the file descriptors for the read or the write channel, which can be different. If the read and the write
channel are different,SSL_get_fd()will return the file descriptor of the read channel.

RETURN VALUES
The following return values can occur:

−1 The operation failed, because the underlyingBIO is not of the correct type (suitable for file
descriptors).

>=0
The file descriptor linked tossl.

SEE ALSO
SSL_set_fd(3), ssl(3) ,bio (3)

0.9.7c 2000-09-16 363

SSL_get_peer_cert_chain(3) OpenSSL SSL_get_peer_cert_chain(3)

NAME
SSL_get_peer_cert_chain − get the X509 certificate chain of the peer

SYNOPSIS
#include <openssl/ssl.h>

STACKOF(X509) *SSL_get_peer_cert_chain(SSL *ssl);

DESCRIPTION
SSL_get_peer_cert_chain()returns a pointer toSTACKOF(X509) certificates forming the certificate
chain of the peer. If called on the client side, the stack also contains the peer’s certificate; if called on
the server side, the peer’s certificate must be obtained separately usingSSL_get_peer_certificate(3). If
the peer did not present a certificate,NULL is returned.

NOTES
The peer certificate chain is not necessarily available after reusing a session, in which case aNULL
pointer is returned.

The reference count of theSTACKOF(X509) object is not incremented. If the corresponding session is
freed, the pointer must not be used any longer.

RETURN VALUES
The following return values can occur:

NULL
No certificate was presented by the peer or no connection was established or the certificate chain is
no longer available when a session is reused.

Pointer to aSTACKOF(X509)
The return value points to the certificate chain presented by the peer.

SEE ALSO
ssl(3), SSL_get_peer_certificate(3)

364 2001-02-16 0.9.7c

SSL_get_peer_certificate(3) OpenSSL SSL_get_peer_certificate(3)

NAME
SSL_get_peer_certificate − get the X509 certificate of the peer

SYNOPSIS
#include <openssl/ssl.h>

X509 *SSL_get_peer_certificate(SSL *ssl);

DESCRIPTION
SSL_get_peer_certificate()returns a pointer to the X509 certificate the peer presented. If the peer did
not present a certificate,NULL is returned.

NOTES
Due to the protocol definition, aTLS/SSLserver will always send a certificate, if present. A client will
only send a certificate when explicitly requested to do so by the server (seeSSL_CTX_set_verify(3)). If
an anonymous cipher is used, no certificates are sent.

That a certificate is returned does not indicate information about the verification state, useSSL_get_ver-
ify_result(3) to check the verification state.

The reference count of the X509 object is incremented by one, so that it will not be destroyed when the
session containing the peer certificate is freed. The X509 object must be explicitly freed using
X509_free().

RETURN VALUES
The following return values can occur:

NULL
No certificate was presented by the peer or no connection was established.

Pointer to an X509 certificate
The return value points to the certificate presented by the peer.

SEE ALSO
ssl(3), SSL_get_verify_result(3), SSL_CTX_set_verify(3)

0.9.7c 2001-09-07 365

SSL_get_rbio(3) OpenSSL SSL_get_rbio(3)

NAME
SSL_get_rbio − get BIO linked to an SSL object

SYNOPSIS
#include <openssl/ssl.h>

BIO *SSL_get_rbio(SSL *ssl);
BIO *SSL_get_wbio(SSL *ssl);

DESCRIPTION
SSL_get_rbio()andSSL_get_wbio()return pointers to the BIOs for the read or the write channel, which
can be different. The reference count of theBIO is not incremented.

RETURN VALUES
The following return values can occur:

NULL
No BIO was connected to theSSLobject

Any other pointer
TheBIO linked tossl.

SEE ALSO
SSL_set_bio(3), ssl(3) ,bio (3)

366 2000-09-16 0.9.7c

SSL_get_session(3) OpenSSL SSL_get_session(3)

NAME
SSL_get_session − retrieve TLS/SSL session data

SYNOPSIS
#include <openssl/ssl.h>

SSL_SESSION *SSL_get_session(SSL *ssl);
SSL_SESSION *SSL_get0_session(SSL *ssl);
SSL_SESSION *SSL_get1_session(SSL *ssl);

DESCRIPTION
SSL_get_session()returns a pointer to theSSL_SESSIONactually used inssl. The reference count of
theSSL_SESSIONis not incremented, so that the pointer can become invalid by other operations.

SSL_get0_session()is the same asSSL_get_session().

SSL_get1_session()is the same asSSL_get_session(), but the reference count of theSSL_SESSIONis
incremented by one.

NOTES
The ssl session contains all information required to re-establish the connection without a new hand-
shake.

SSL_get0_session()returns a pointer to the actual session. As the reference counter is not incremented,
the pointer is only valid while the connection is in use. IfSSL_clear(3) or SSL_free(3) is called, the
session may be removed completely (if considered bad), and the pointer obtained will become invalid.
Even if the session is valid, it can be removed at any time due to timeout duringSSL_CTX_flush_ses-
sions(3).

If the data is to be kept,SSL_get1_session()will increment the reference count, so that the session will
not be implicitly removed by other operations but stays in memory. In order to remove the session
SSL_SESSION_free(3) must be explicitly called once to decrement the reference count again.

SSL_SESSIONobjects keep internal link information about the session cache list, when being inserted
into oneSSL_CTXobject’s session cache. OneSSL_SESSIONobject, regardless of its reference count,
must therefore only be used with oneSSL_CTXobject (and theSSLobjects created from thisSSL_CTX
object).

RETURN VALUES
The following return values can occur:

NULL
There is no session available inssl.

Pointer to anSSL
The return value points to the data of anSSLsession.

SEE ALSO
ssl(3), SSL_free(3), SSL_clear(3), SSL_SESSION_free(3)

0.9.7c 2001-11-19 367

SSL_get_SSL_CTX(3) OpenSSL SSL_get_SSL_CTX(3)

NAME
SSL_get_SSL_CTX − get the SSL_CTX from which an SSL is created

SYNOPSIS
#include <openssl/ssl.h>

SSL_CTX *SSL_get_SSL_CTX(SSL *ssl);

DESCRIPTION
SSL_get_SSL_CTX()returns a pointer to theSSL_CTX object, from whichssl was created with
SSL_new(3).

RETURN VALUES
The pointer to theSSL_CTXobject is returned.

SEE ALSO
ssl(3), SSL_new(3)

368 2001-08-17 0.9.7c

SSL_get_verify_result(3) OpenSSL SSL_get_verify_result(3)

NAME
SSL_get_verify_result − get result of peer certificate verification

SYNOPSIS
#include <openssl/ssl.h>

long SSL_get_verify_result(SSL *ssl);

DESCRIPTION
SSL_get_verify_result()returns the result of the verification of the X509 certificate presented by the
peer, if any.

NOTES
SSL_get_verify_result()can only return one error code while the verification of a certificate can fail
because of many reasons at the same time. Only the last verification error that occurred during the pro-
cessing is available fromSSL_get_verify_result().

The verification result is part of the established session and is restored when a session is reused.

BUGS
If no peer certificate was presented, the returned result code is X509_V_OK. This is because no verifi-
cation error occurred, it does however not indicate success.SSL_get_verify_result()is only useful in
connection withSSL_get_peer_certificate(3).

RETURN VALUES
The following return values can currently occur:

X509_V_OK
The verification succeeded or no peer certificate was presented.

Any other value
Documented inverify(1).

SEE ALSO
ssl(3), SSL_set_verify_result(3), SSL_get_peer_certificate(3), verify(1)

0.9.7c 2001-02-16 369

SSL_get_version(3) OpenSSL SSL_get_version(3)

NAME
SSL_get_version − get the protocol version of a connection.

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_get_version(SSL *ssl);

DESCRIPTION
SSL_get_cipher_version()returns the name of the protocol used for the connectionssl.

RETURN VALUES
The following strings can occur:

SSLv2
The connection uses the SSLv2 protocol.

SSLv3
The connection uses the SSLv3 protocol.

TLSv1
The connection uses the TLSv1 protocol.

unknown
This indicates that no version has been set (no connection established).

SEE ALSO
ssl(3)

370 2001-02-23 0.9.7c

SSL_library_init(3) OpenSSL SSL_library_init(3)

NAME
SSL_library_init, OpenSSL_add_ssl_algorithms, SSLeay_add_ssl_algorithms − initialize SSL library
by registering algorithms

SYNOPSIS
#include <openssl/ssl.h>

int SSL_library_init(void);
#define OpenSSL_add_ssl_algorithms() SSL_library_init()
#define SSLeay_add_ssl_algorithms() SSL_library_init()

DESCRIPTION
SSL_library_init()registers the available ciphers and digests.

OpenSSL_add_ssl_algorithms() and SSLeay_add_ssl_algorithms() are synonyms for
SSL_library_init().

NOTES
SSL_library_init()must be called before any other action takes place.

WARNING
SSL_library_init()only registers ciphers. Another important initialization is the seeding of thePRNG
(Pseudo Random Number Generator), which has to be performed separately.

EXAMPLES
A typical TLS/SSLapplication will start with the library initialization, will provide readable error mes-
sages and will seed thePRNG.

SSL_load_error_strings(); /* readable error messages */
SSL_library_init(); /* initialize library */
actions_to_seed_PRNG();

RETURN VALUES
SSL_library_init()always returns ‘‘1’’, so it is safe to discard the return value.

SEE ALSO
ssl(3), SSL_load_error_strings(3), RAND_add(3)

0.9.7c 2000-09-21 371

SSL_load_client_CA_file(3) OpenSSL SSL_load_client_CA_file(3)

NAME
SSL_load_client_CA_file − load certificate names from file

SYNOPSIS
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file);

DESCRIPTION
SSL_load_client_CA_file()reads certificates fromfile and returns aSTACK_OF(X509_NAME) with the
subject names found.

NOTES
SSL_load_client_CA_file()reads a file ofPEM formatted certificates and extracts the X509_NAMES of
the certificates found. While the name suggests the specific usage as support function for
SSL_CTX_set_client_CA_list(3), it is not limited toCA certificates.

EXAMPLES
Load names of CAs from file and use it as a clientCA list:

SSL_CTX *ctx;
STACK_OF(X509_NAME) *cert_names;

...
cert_names = SSL_load_client_CA_file("/path/to/CAfile.pem");
if (cert_names != NULL)

SSL_CTX_set_client_CA_list(ctx, cert_names);
else

error_handling();
...

RETURN VALUES
The following return values can occur:

NULL
The operation failed, check out the error stack for the reason.

Pointer toSTACK_OF(X509_NAME)
Pointer to the subject names of the successfully read certificates.

SEE ALSO
ssl(3), SSL_CTX_set_client_CA_list(3)

372 2000-10-04 0.9.7c

SSL_new(3) OpenSSL SSL_new(3)

NAME
SSL_new − create a new SSL structure for a connection

SYNOPSIS
#include <openssl/ssl.h>

SSL *SSL_new(SSL_CTX *ctx);

DESCRIPTION
SSL_new()creates a newSSL structure which is needed to hold the data for aTLS/SSLconnection. The
new structure inherits the settings of the underlying contextctx: connection method
(SSLv2/v3/TLSv1), options, verification settings, timeout settings.

RETURN VALUES
The following return values can occur:

NULL
The creation of a newSSLstructure failed. Check the error stack to find out the reason.

Pointer to anSSLstructure
The return value points to an allocatedSSLstructure.

SEE ALSO
SSL_free(3), SSL_clear(3), SSL_CTX_set_options(3), SSL_get_SSL_CTX(3), ssl(3)

0.9.7c 2001-08-17 373

SSL_pending(3) OpenSSL SSL_pending(3)

NAME
SSL_pending − obtain number of readable bytes buffered in an SSL object

SYNOPSIS
#include <openssl/ssl.h>

int SSL_pending(SSL *ssl);

DESCRIPTION
SSL_pending()returns the number of bytes which are available insidesslfor immediate read.

NOTES
Data are received in blocks from the peer. Therefore data can be buffered insidessl and are ready for
immediate retrieval withSSL_read(3).

RETURN VALUES
The number of bytes pending is returned.

BUGS
SSL_pending()takes into account only bytes from theTLS/SSLrecord that is currently being processed
(if any). If theSSL object’sread_aheadflag is set, additional protocol bytes may have been read con-
taining moreTLS/SSLrecords; these are ignored bySSL_pending().

Up to OpenSSL 0.9.6,SSL_pending()does not check if the record type of pending data is application
data.

SEE ALSO
SSL_read(3), ssl(3)

374 2000-12-25 0.9.7c

SSL_read(3) OpenSSL SSL_read(3)

NAME
SSL_read − read bytes from a TLS/SSL connection.

SYNOPSIS
#include <openssl/ssl.h>

int SSL_read(SSL *ssl, void *buf, int num);

DESCRIPTION
SSL_read()tries to readnum bytes from the specifiedssl into the bufferbuf.

NOTES
If necessary,SSL_read()will negotiate aTLS/SSL session, if not already explicitly performed by
SSL_connect(3) or SSL_accept(3). If the peer requests a re−negotiation, it will be performed transpar-
ently during theSSL_read()operation. The behaviour ofSSL_read()depends on the underlyingBIO.

For the transparent negotiation to succeed, thessl must have been initialized to client or server mode.
This is being done by callingSSL_set_connect_state(3) or SSL_set_accept_state()before the first call
to anSSL_read()or SSL_write(3) function.

SSL_read()works based on theSSL/TLS records. The data are received in records (with a maximum
record size of 16kB for SSLv3/TLSv1). Only when a record has been completely received, it can be
processed (decryption and check of integrity). Therefore data that was not retrieved at the last call of
SSL_read()can still be buffered inside theSSL layer and will be retrieved on the next call to
SSL_read(). Ifnum is higher than the number of bytes buffered,SSL_read()will return with the bytes
buffered. If no more bytes are in the buffer,SSL_read()will trigger the processing of the next record.
Only when the record has been received and processed completely,SSL_read()will return reporting
success. At most the contents of the record will be returned. As the size of anSSL/TLS record may
exceed the maximum packet size of the underlying transport (e.g.TCP), it may be necessary to read
several packets from the transport layer before the record is complete andSSL_read()can succeed.

If the underlyingBIO is blocking, SSL_read()will only return, once the read operation has been fin-
ished or an error occurred, except when a renegotiation take place, in which case a
SSL_ERROR_WANT_READ may occur. This behaviour can be controlled with the
SSL_MODE_AUTO_RETRYflag of theSSL_CTX_set_mode(3) call.

If the underlyingBIO is non-blocking, SSL_read()will also return when the underlyingBIO could not
satisfy the needs ofSSL_read()to continue the operation. In this case a call toSSL_get_error(3) with
the return value ofSSL_read()will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE.
As at any time a re-negotiation is possible, a call toSSL_read()can also cause write operations! The
calling process then must repeat the call after taking appropriate action to satisfy the needs of
SSL_read(). The action depends on the underlyingBIO. When using a non-blocking socket, nothing is
to be done, butselect()can be used to check for the required condition. When using a bufferingBIO,
like a BIO pair, data must be written into or retrieved out of theBIO before being able to continue.

WARNING
When an SSL_read()operation has to be repeated because ofSSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, it must be repeated with the same arguments.

RETURN VALUES
The following return values can occur:

>0 The read operation was successful; the return value is the number of bytes actually read from the
TLS/SSLconnection.

• The read operation was not successful. The reason may either be a clean shutdown due to a ‘‘close
notify’’ alert sent by the peer (in which case theSSL_RECEIVED_SHUTDOWNflag in the ssl shut-
down state is set (seeSSL_shutdown(3), SSL_set_shutdown(3)). It is also possible, that the peer
simply shut down the underlying transport and the shutdown is incomplete. CallSSL_get_error()
with the return valueret to find out, whether an error occurred or the connection was shut down
cleanly (SSL_ERROR_ZERO_RETURN).

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected,
whether the underlying connection was closed. It cannot be checked, whether the closure was ini-
tiated by the peer or by something else.

0.9.7c 2001-09-13 375

SSL_read(3) OpenSSL SSL_read(3)

<0 Theread operation was not successful, because either an error occurred or action must be taken by
the calling process. CallSSL_get_error()with the return valueret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_write(3), SSL_CTX_set_mode(3), SSL_CTX_new(3), SSL_connect(3),
SSL_accept(3) SSL_set_connect_state(3), SSL_shutdown(3), SSL_set_shutdown(3), ssl(3), bio (3)

376 2001-09-13 0.9.7c

SSL_rstate_string(3) OpenSSL SSL_rstate_string(3)

NAME
SSL_rstate_string, SSL_rstate_string_long − get textual description of state of an SSL object during
read operation

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_rstate_string(SSL *ssl);
const char *SSL_rstate_string_long(SSL *ssl);

DESCRIPTION
SSL_rstate_string()returns a 2 letter string indicating the current read state of theSSLobjectssl.

SSL_rstate_string_long()returns a string indicating the current read state of theSSLobjectssl.

NOTES
When performing a read operation, theSSL/TLSengine must parse the record, consisting of header and
body. When working in a blocking environment, SSL_rstate_string[_long]() should always return
‘‘ RD’’/‘‘read done’’.

This function should only seldom be needed in applications.

RETURN VALUES
SSL_rstate_string()andSSL_rstate_string_long()can return the following values:

‘‘ RH’’/‘‘read header’’
The header of the record is being evaluated.

‘‘ RB’’/‘‘read body’’
The body of the record is being evaluated.

‘‘ RD’’/‘‘read done’’
The record has been completely processed.

‘‘unknown’’/‘‘unknown’’
The read state is unknown. This should never happen.

SEE ALSO
ssl(3)

0.9.7c 2001-08-23 377

SSL_SESSION_free(3) OpenSSL SSL_SESSION_free(3)

NAME
SSL_SESSION_free − free an allocated SSL_SESSION structure

SYNOPSIS
#include <openssl/ssl.h>

void SSL_SESSION_free(SSL_SESSION *session);

DESCRIPTION
SSL_SESSION_free()decrements the reference count ofsessionand removes theSSL_SESSIONstruc-
ture pointed to bysessionand frees up the allocated memory, if the the reference count has reached 0.

NOTES
SSL_SESSIONobjects are allocated, when aTLS/SSL handshake operation is successfully completed.
Depending on the settings, seeSSL_CTX_set_session_cache_mode(3), theSSL_SESSIONobjects are
internally referenced by theSSL_CTXand linked into its session cache.SSL objects may be using the
SSL_SESSIONobject; as a session may be reused, severalSSL objects may be using oneSSL_SESSION
object at the same time. It is therefore crucial to keep the reference count (usage information) correct
and not delete aSSL_SESSIONobject that is still used, as this may lead to program failures due to dan-
gling pointers. These failures may also appear delayed, e.g. when anSSL_SESSIONobject was com-
pletely freed as the reference count incorrectly became 0, but it is still referenced in the internal session
cache and the cache list is processed during aSSL_CTX_flush_sessions(3) operation.

SSL_SESSION_free()must only be called forSSL_SESSIONobjects, for which the reference count was
explicitly incremented (e.g. by callingSSL_get1_session(), see SSL_get_session(3)) or when the
SSL_SESSIONobject was generated outside aTLS handshake operation, e.g. by usingd2i_SSL_SES-
SION(3). It must not be called on otherSSL_SESSIONobjects, as this would cause incorrect reference
counts and therefore program failures.

RETURN VALUES
SSL_SESSION_free()does not provide diagnostic information.

SEE ALSO
ssl(3), SSL_get_session(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_flush_sessions(3),
d2i_SSL_SESSION(3)

378 2001-10-12 0.9.7c

SSL_SESSION_get_ex_new_index(3) OpenSSL SSL_SESSION_get_ex_new_index(3)

NAME
SSL_SESSION_get_ex_new_index, SSL_SESSION_set_ex_data, SSL_SESSION_get_ex_data −
internal application specific data functions

SYNOPSIS
#include <openssl/ssl.h>

int SSL_SESSION_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);

int SSL_SESSION_set_ex_data(SSL_SESSION *session, int idx, void *arg);

void *SSL_SESSION_get_ex_data(SSL_SESSION *session, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);

typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
int idx, long argl, void *argp);

DESCRIPTION
Several OpenSSL structures can have application specific data attached to them. These functions are
used internally by OpenSSL to manipulate application specific data attached to a specific structure.

SSL_SESSION_get_ex_new_index()is used to register a new index for application specific data.

SSL_SESSION_set_ex_data()is used to store application data atarg for idx into thesessionobject.

SSL_SESSION_get_ex_data()is used to retrieve the information foridx from session.

A detailed description for the *_get_ex_new_index() functionality can be found in
RSA_get_ex_new_index(3). The *_get_ex_data() and *_set_ex_data() functionality is described in
CRYPTO_set_ex_data(3).

WARNINGS
The application data is only maintained for sessions held in memory. The application data is not
included when dumping the session withi2d_SSL_SESSION()(and all functions indirectly calling the
dump functions likePEM_write_SSL_SESSION()and PEM_write_bio_SSL_SESSION()) and can
therefore not be restored.

SEE ALSO
ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3)

0.9.7c 2001-05-14 379

SSL_SESSION_get_time(3) OpenSSL SSL_SESSION_get_time(3)

NAME
SSL_SESSION_get_time, SSL_SESSION_set_time, SSL_SESSION_get_timeout, SSL_SES-
SION_get_timeout − retrieve and manipulate session time and timeout settings

SYNOPSIS
#include <openssl/ssl.h>

long SSL_SESSION_get_time(SSL_SESSION *s);
long SSL_SESSION_set_time(SSL_SESSION *s, long tm);
long SSL_SESSION_get_timeout(SSL_SESSION *s);
long SSL_SESSION_set_timeout(SSL_SESSION *s, long tm);

long SSL_get_time(SSL_SESSION *s);
long SSL_set_time(SSL_SESSION *s, long tm);
long SSL_get_timeout(SSL_SESSION *s);
long SSL_set_timeout(SSL_SESSION *s, long tm);

DESCRIPTION
SSL_SESSION_get_time()returns the time at which the sessions was established. The time is given in
seconds since the Epoch and therefore compatible to the time delivered by thetime()call.

SSL_SESSION_set_time()replaces the creation time of the sessionswith the chosen valuetm.

SSL_SESSION_get_timeout()returns the timeout value set for sessions in seconds.

SSL_SESSION_set_timeout()sets the timeout value for sessions in seconds totm.

The SSL_get_time(), SSL_set_time(), SSL_get_timeout(), and SSL_set_timeout()functions are syn-
onyms for the SSL_SESSION_*() counterparts.

NOTES
Sessions are expired by examining the creation time and the timeout value. Both are set at creation
time of the session to the actual time and the default timeout value at creation, respectively, as set by
SSL_CTX_set_timeout(3). Using these functions it is possible to extend or shorten the lifetime of the
session.

RETURN VALUES
SSL_SESSION_get_time()andSSL_SESSION_get_timeout()return the currently valid values.

SSL_SESSION_set_time()andSSL_SESSION_set_timeout()return 1 on success.

If any of the function is passed theNULL pointer for the sessions, 0 is returned.

SEE ALSO
ssl(3), SSL_CTX_set_timeout(3), SSL_get_default_timeout(3)

380 2001-08-17 0.9.7c

SSL_session_reused(3) OpenSSL SSL_session_reused(3)

NAME
SSL_session_reused − query whether a reused session was negotiated during handshake

SYNOPSIS
#include <openssl/ssl.h>

int SSL_session_reused(SSL *ssl);

DESCRIPTION
Query, whether a reused session was negotiated during the handshake.

NOTES
During the negotiation, a client can propose to reuse a session. The server then looks up the session in
its cache. If both client and server agree on the session, it will be reused and a flag is being set that can
be queried by the application.

RETURN VALUES
The following return values can occur:

• A new session was negotiated.

1 A session was reused.

SEE ALSO
ssl(3), SSL_set_session(3), SSL_CTX_set_session_cache_mode(3)

0.9.7c 2001-07-20 381

SSL_set_bio(3) OpenSSL SSL_set_bio(3)

NAME
SSL_set_bio − connect the SSL object with a BIO

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio);

DESCRIPTION
SSL_set_bio()connects the BIOsrbio and wbio for the read and write operations of theTLS/SSL
(encrypted) side ofssl.

TheSSLengine inherits the behaviour ofrbio andwbio, respectively. If aBIO is non−blocking, thessl
will also have non-blocking behaviour.

If there was already aBIO connected tossl, BIO_free()will be called (for both the reading and writing
side, if different).

RETURN VALUES
SSL_set_bio()cannot fail.

SEE ALSO
SSL_get_rbio(3), SSL_connect(3), SSL_accept(3), SSL_shutdown(3), ssl(3), bio (3)

382 2000-09-16 0.9.7c

SSL_set_connect_state(3) OpenSSL SSL_set_connect_state(3)

NAME
SSL_set_connect_state, SSL_get_accept_state − prepare SSL object to work in client or server mode

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_connect_state(SSL *ssl);

void SSL_set_accept_state(SSL *ssl);

DESCRIPTION
SSL_set_connect_state()setssslto work in client mode.

SSL_set_accept_state()setssslto work in server mode.

NOTES
When theSSL_CTXobject was created withSSL_CTX_new(3), it was either assigned a dedicated client
method, a dedicated server method, or a generic method, that can be used for both client and server
connections. (The method might have been changed withSSL_CTX_set_ssl_version(3) or
SSL_set_ssl_method().)

When beginning a new handshake, theSSL engine must know whether it must call the connect (client)
or accept (server) routines. Even though it may be clear from the method chosen, whether client or
server mode was requested, the handshake routines must be explicitly set.

When using theSSL_connect(3) or SSL_accept(3) routines, the correct handshake routines are auto-
matically set. When performing a transparent negotiation usingSSL_write(3) or SSL_read(3), the
handshake routines must be explicitly set in advance using eitherSSL_set_connect_state()or
SSL_set_accept_state().

RETURN VALUES
SSL_set_connect_state()andSSL_set_accept_state()do not return diagnostic information.

SEE ALSO
ssl(3), SSL_new(3), SSL_CTX_new(3), SSL_connect(3), SSL_accept(3), SSL_write(3), SSL_read(3),
SSL_do_handshake(3), SSL_CTX_set_ssl_version(3)

0.9.7c 2002-07-19 383

SSL_set_fd(3) OpenSSL SSL_set_fd(3)

NAME
SSL_set_fd − connect the SSL object with a file descriptor

SYNOPSIS
#include <openssl/ssl.h>

int SSL_set_fd(SSL *ssl, int fd);
int SSL_set_rfd(SSL *ssl, int fd);
int SSL_set_wfd(SSL *ssl, int fd);

DESCRIPTION
SSL_set_fd()sets the file descriptorfd as the input/output facility for theTLS/SSL(encrypted) side of
ssl. fd will typically be the socket file descriptor of a network connection.

When performing the operation, asocketBIO is automatically created to interface between thessland
fd. The BIO and hence theSSL engine inherit the behaviour offd. If fd is non−blocking, thessl will
also have non-blocking behaviour.

If there was already aBIO connected tossl, BIO_free()will be called (for both the reading and writing
side, if different).

SSL_set_rfd()and SSL_set_wfd()perform the respective action, but only for the read channel or the
write channel, which can be set independently.

RETURN VALUES
The following return values can occur:

• The operation failed. Check the error stack to find out why.

1 The operation succeeded.

SEE ALSO
SSL_get_fd(3), SSL_set_bio(3), SSL_connect(3), SSL_accept(3), SSL_shutdown(3), ssl(3) ,bio (3)

384 2000-09-16 0.9.7c

SSL_set_session(3) OpenSSL SSL_set_session(3)

NAME
SSL_set_session − set a TLS/SSL session to be used during TLS/SSL connect

SYNOPSIS
#include <openssl/ssl.h>

int SSL_set_session(SSL *ssl, SSL_SESSION *session);

DESCRIPTION
SSL_set_session()sets session to be used when theTLS/SSL connection is to be established.
SSL_set_session()is only useful forTLS/SSL clients. When the session is set, the reference count of
sessionis incremented by 1. If the session is not reused, the reference count is decremented again dur-
ing SSL_connect(). Whether the session was reused can be queried with theSSL_session_reused(3)
call.

If there is already a session set insidessl (because it was set withSSL_set_session()before or because
the samesslwas already used for a connection),SSL_SESSION_free()will be called for that session.

NOTES
SSL_SESSIONobjects keep internal link information about the session cache list, when being inserted
into oneSSL_CTXobject’s session cache. OneSSL_SESSIONobject, regardless of its reference count,
must therefore only be used with oneSSL_CTXobject (and theSSLobjects created from thisSSL_CTX
object).

RETURN VALUES
The following return values can occur:

• The operation failed; check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO
ssl(3), SSL_SESSION_free(3), SSL_get_session(3), SSL_session_reused(3), SSL_CTX_set_ses-
sion_cache_mode(3)

0.9.7c 2001-10-12 385

SSL_set_shutdown(3) OpenSSL SSL_set_shutdown(3)

NAME
SSL_set_shutdown, SSL_get_shutdown − manipulate shutdown state of an SSL connection

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_shutdown(SSL *ssl, int mode);

int SSL_get_shutdown(SSL *ssl);

DESCRIPTION
SSL_set_shutdown()sets the shutdown state ofsslto mode.

SSL_get_shutdown()returns the shutdown mode ofssl.

NOTES
The shutdown state of an ssl connection is a bitmask of:

• No shutdown setting, yet.

SSL_SENT_SHUTDOWN
A ‘‘close notify’’ shutdown alert was sent to the peer, the connection is being considered closed
and the session is closed and correct.

SSL_RECEIVED_SHUTDOWN
A shutdown alert was received form the peer, either a normal ‘‘close notify’’ or a fatal error.

SSL_SENT_SHUTDOWNandSSL_RECEIVED_SHUTDOWNcan be set at the same time.

The shutdown state of the connection is used to determine the state of the ssl session. If the session is
still open, whenSSL_clear(3) or SSL_free(3) is called, it is considered bad and removed according to
RFC2246. The actual condition for a correctly closed session isSSL_SENT_SHUTDOWN(according to
theTLS RFC, it is acceptable to only send the ‘‘close notify’’ alert but to not wait for the peer’s answer,
when the underlying connection is closed).SSL_set_shutdown()can be used to set this state without
sending a close alert to the peer (seeSSL_shutdown(3)).

If a ‘‘close notify’’ was received, SSL_RECEIVED_SHUTDOWN will be set, for setting
SSL_SENT_SHUTDOWNthe application must however still callSSL_shutdown(3) or SSL_set_shut-
down()itself.

RETURN VALUES
SSL_set_shutdown()does not return diagnostic information.

SSL_get_shutdown()returns the current setting.

SEE ALSO
ssl(3), SSL_shutdown(3), SSL_CTX_set_quiet_shutdown(3), SSL_clear(3), SSL_free(3)

386 2001-08-20 0.9.7c

SSL_set_verify_result(3) OpenSSL SSL_set_verify_result(3)

NAME
SSL_set_verify_result − override result of peer certificate verification

SYNOPSIS
#include <openssl/ssl.h>

void SSL_set_verify_result(SSL *ssl, long verify_result);

DESCRIPTION
SSL_set_verify_result()setsverify_result of the objectssl to be the result of the verification of the
X509 certificate presented by the peer, if any.

NOTES
SSL_set_verify_result()overrides the verification result. It only changes the verification result of thessl
object. It does not become part of the established session, so if the session is to be reused later, the orig-
inal value will reappear.

The valid codes forverify_result are documented inverify(1).

RETURN VALUES
SSL_set_verify_result()does not provide a return value.

SEE ALSO
ssl(3), SSL_get_verify_result(3), SSL_get_peer_certificate(3), verify(1)

0.9.7c 2000-09-20 387

SSL_shutdown(3) OpenSSL SSL_shutdown(3)

NAME
SSL_shutdown − shut down a TLS/SSL connection

SYNOPSIS
#include <openssl/ssl.h>

int SSL_shutdown(SSL *ssl);

DESCRIPTION
SSL_shutdown()shuts down an activeTLS/SSLconnection. It sends the ‘‘close notify’’ shutdown alert
to the peer.

NOTES
SSL_shutdown()tries to send the ‘‘close notify’’ shutdown alert to the peer. Whether the operation suc-
ceeds or not, theSSL_SENT_SHUTDOWN flag is set and a currently open session is considered closed
and good and will be kept in the session cache for further reuse.

The shutdown procedure consists of 2 steps: the sending of the ‘‘close notify’’ shutdown alert and the
reception of the peer’s ‘‘close notify’’ shutdown alert. According to theTLS standard, it is acceptable
for an application to only send its shutdown alert and then close the underlying connection without
waiting for the peer’s response (this way resources can be saved, as the process can already terminate
or serve another connection). When the underlying connection shall be used for more communications,
the complete shutdown procedure (bidirectional ‘‘close notify’’ alerts) must be performed, so that the
peers stay synchronized.

SSL_shutdown()supports both uni− and bidirectional shutdown by its 2 step behaviour.

When the application is the first party to send the ‘‘close notify’’ alert,SSL_shutdown()will only send
the alert and the set theSSL_SENT_SHUTDOWNflag (so that the session is considered good and will be
kept in cache).SSL_shutdown()will then return with 0. If a unidirectional shutdown is enough (the
underlying connection shall be closed anyway), this first call toSSL_shutdown()is sufficient. In order
to complete the bidirectional shutdown handshake,SSL_shutdown()must be called again. The second
call will makeSSL_shutdown()wait for the peer’s ‘‘close notify’’ shutdown alert. On success, the sec-
ond call toSSL_shutdown()will return with 1.
If the peer already sent the ‘‘close notify’’ alertand it was already processed implicitly inside another
function (SSL_read(3)), the SSL_RECEIVED_SHUTDOWNflag is set.SSL_shutdown()will send the
‘‘close notify’’ alert, set theSSL_SENT_SHUTDOWNflag and will immediately return with 1. Whether
SSL_RECEIVED_SHUTDOWNis already set can be checked using theSSL_get_shutdown()(see also
SSL_set_shutdown(3) call.

It is therefore recommended, to check the return value ofSSL_shutdown()and callSSL_shutdown()
again, if the bidirectional shutdown is not yet complete (return value of the first call is 0). As the shut-
down is not specially handled in the SSLv2 protocol,SSL_shutdown()will succeed on the first call.

The behaviour ofSSL_shutdown()additionally depends on the underlyingBIO.

If the underlyingBIO is blocking, SSL_shutdown()will only return once the handshake step has been
finished or an error occurred.

If the underlyingBIO is non-blocking, SSL_shutdown()will also return when the underlyingBIO could
not satisfy the needs ofSSL_shutdown()to continue the handshake. In this case a call to
SSL_get_error()with the return value ofSSL_shutdown()will yield SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. The calling process then must repeat the call after taking appropriate
action to satisfy the needs ofSSL_shutdown(). The action depends on the underlyingBIO. When using
a non-blocking socket, nothing is to be done, butselect()can be used to check for the required condi-
tion. When using a bufferingBIO, like a BIO pair, data must be written into or retrieved out of theBIO
before being able to continue.

SSL_shutdown()can be modified to only set the connection to ‘‘shutdown’’ state but not actually send
the ‘‘close notify’’ alert messages, seeSSL_CTX_set_quiet_shutdown(3). When ‘‘quiet shutdown’’ is
enabled,SSL_shutdown()will always succeed and return 1.

RETURN VALUES
The following return values can occur:

388 2001-08-20 0.9.7c

SSL_shutdown(3) OpenSSL SSL_shutdown(3)

1 The shutdown was successfully completed. The ‘‘close notify’’ alert was sent and the peer’s
‘‘close notify’’ alert was received.

• The shutdown is not yet finished. CallSSL_shutdown()for a second time, if a bidirectional shut-
down shall be performed. The output ofSSL_get_error(3) may be misleading, as an erroneous
SSL_ERROR_SYSCALLmay be flagged even though no error occurred.

−1 The shutdown was not successful because a fatal error occurred either at the protocol level or a
connection failure occurred. It can also occur if action is need to continue the operation for non-
blocking BIOs. CallSSL_get_error(3) with the return valueret to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_connect(3), SSL_accept(3), SSL_set_shutdown(3), SSL_CTX_set_quiet_shut-
down(3), SSL_clear(3), SSL_free(3), ssl(3), bio (3)

0.9.7c 2001-08-20 389

SSL_state_string(3) OpenSSL SSL_state_string(3)

NAME
SSL_state_string, SSL_state_string_long − get textual description of state of an SSL object

SYNOPSIS
#include <openssl/ssl.h>

const char *SSL_state_string(SSL *ssl);
const char *SSL_state_string_long(SSL *ssl);

DESCRIPTION
SSL_state_string()returns a 6 letter string indicating the current state of theSSLobjectssl.

SSL_state_string_long()returns a string indicating the current state of theSSLobjectssl.

NOTES
During its use, anSSL objects passes several states. The state is internally maintained. Querying the
state information is not very informative before or when a connection has been established. It however
can be of significant interest during the handshake.

When using non-blocking sockets, the function call performing the handshake may return with
SSL_ERROR_WANT_READor SSL_ERROR_WANT_WRITEcondition, so that SSL_state_string[_long]()
may be called.

For both blocking or non-blocking sockets, the details state information can be used within the
info_callback function set with theSSL_set_info_callback()call.

RETURN VALUES
Detailed description of possible states to be included later.

SEE ALSO
ssl(3), SSL_CTX_set_info_callback(3)

390 2001-08-24 0.9.7c

SSL_want(3) OpenSSL SSL_want(3)

NAME
SSL_want, SSL_want_nothing, SSL_want_read, SSL_want_write, SSL_want_x509_lookup − obtain
state information TLS/SSL I/O operation

SYNOPSIS
#include <openssl/ssl.h>

int SSL_want(SSL *ssl);
int SSL_want_nothing(SSL *ssl);
int SSL_want_read(SSL *ssl);
int SSL_want_write(SSL *ssl);
int SSL_want_x509_lookup(SSL *ssl);

DESCRIPTION
SSL_want()returns state information for theSSLobjectssl.

The other SSL_want_*() calls are shortcuts for the possible states returned bySSL_want().

NOTES
SSL_want()examines the internal state information of theSSL object. Its return values are similar to
that of SSL_get_error(3). Unlike SSL_get_error(3), which also evaluates the error queue, the results
are obtained by examining an internal state flag only. The information must therefore only be used for
normal operation under non-blocking I/O. Error conditions are not handled and must be treated using
SSL_get_error(3).

The result returned bySSL_want()should always be consistent with the result ofSSL_get_error(3).

RETURN VALUES
The following return values can currently occur forSSL_want():

SSL_NOTHING
There is no data to be written or to be read.

SSL_WRITING
There are data in theSSL buffer that must be written to the underlyingBIO layer in order to com-
plete the actual SSL_*() operation. A call toSSL_get_error(3) should return
SSL_ERROR_WANT_WRITE.

SSL_READING
More data must be read from the underlyingBIO layer in order to complete the actual SSL_*()
operation. A call toSSL_get_error(3) should returnSSL_ERROR_WANT_READ.

SSL_X509_LOOKUP
The operation did not complete because an application callback set by
SSL_CTX_set_client_cert_cb()has asked to be called again. A call toSSL_get_error(3) should
returnSSL_ERROR_WANT_X509_LOOKUP.

SSL_want_nothing(), SSL_want_read(),SSL_want_write(), SSL_want_x509_lookup()return 1, when
the corresponding condition is true or 0 otherwise.

SEE ALSO
ssl(3), err (3), SSL_get_error(3)

0.9.7c 2001-08-17 391

SSL_write(3) OpenSSL SSL_write(3)

NAME
SSL_write − write bytes to a TLS/SSL connection.

SYNOPSIS
#include <openssl/ssl.h>

int SSL_write(SSL *ssl, const void *buf, int num);

DESCRIPTION
SSL_write()writesnum bytes from the bufferbuf into the specifiedsslconnection.

NOTES
If necessary,SSL_write()will negotiate aTLS/SSL session, if not already explicitly performed by
SSL_connect(3) or SSL_accept(3). If the peer requests a re−negotiation, it will be performed transpar-
ently during theSSL_write()operation. The behaviour ofSSL_write()depends on the underlyingBIO.

For the transparent negotiation to succeed, thessl must have been initialized to client or server mode.
This is being done by callingSSL_set_connect_state(3) or SSL_set_accept_state()before the first call
to anSSL_read(3) orSSL_write()function.

If the underlyingBIO is blocking, SSL_write()will only return, once the write operation has been fin-
ished or an error occurred, except when a renegotiation take place, in which case a
SSL_ERROR_WANT_READ may occur. This behaviour can be controlled with the
SSL_MODE_AUTO_RETRYflag of theSSL_CTX_set_mode(3) call.

If the underlyingBIO is non-blocking, SSL_write()will also return, when the underlyingBIO could not
satisfy the needs ofSSL_write()to continue the operation. In this case a call toSSL_get_error(3) with
the return value of SSL_write() will yield SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. As at any time a re-negotiation is possible, a call toSSL_write()can also
cause read operations! The calling process then must repeat the call after taking appropriate action to
satisfy the needs ofSSL_write(). The action depends on the underlyingBIO. When using a non-block-
ing socket, nothing is to be done, butselect()can be used to check for the required condition. When
using a bufferingBIO, like aBIO pair, data must be written into or retrieved out of theBIO before being
able to continue.

SSL_write()will only return with success, when the complete contents ofbuf of lengthnum has been
written. This default behaviour can be changed with theSSL_MODE_ENABLE_PARTIAL_WRITEoption
of SSL_CTX_set_mode(3). When this flag is set,SSL_write()will also return with success, when a par-
tial write has been successfully completed. In this case theSSL_write()operation is considered com-
pleted. The bytes are sent and a newSSL_write()operation with a new buffer (with the already sent
bytes removed) must be started. A partial write is performed with the size of a message block, which is
16kB for SSLv3/TLSv1.

WARNING
When an SSL_write() operation has to be repeated because ofSSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, it must be repeated with the same arguments.

When callingSSL_write()with num=0 bytes to be sent the behaviour is undefined.

RETURN VALUES
The following return values can occur:

>0 The write operation was successful, the return value is the number of bytes actually written to the
TLS/SSLconnection.

• The write operation was not successful. Probably the underlying connection was closed. Call
SSL_get_error()with the return valueret to find out, whether an error occurred or the connection
was shut down cleanly (SSL_ERROR_ZERO_RETURN).

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected,
whether the underlying connection was closed. It cannot be checked, why the closure happened.

<0 The write operation was not successful, because either an error occurred or action must be taken
by the calling process. CallSSL_get_error()with the return valueret to find out the reason.

392 2002-07-19 0.9.7c

SSL_write(3) OpenSSL SSL_write(3)

SEE ALSO
SSL_get_error(3), SSL_read(3), SSL_CTX_set_mode(3), SSL_CTX_new(3), SSL_connect(3),
SSL_accept(3) SSL_set_connect_state(3), ssl(3), bio (3)

0.9.7c 2002-07-19 393

threads(3) OpenSSL threads(3)

NAME
CRYPTO_set_locking_callback, CRYPTO_set_id_callback, CRYPTO_num_locks, CRYPTO_set_dyn-
lock_create_callback, CRYPTO_set_dynlock_lock_callback, CRYPTO_set_dynlock_destroy_callback,
CRYPTO_get_new_dynlockid, CRYPTO_destroy_dynlockid, CRYPTO_lock − OpenSSL thread sup-
port

SYNOPSIS
#include <openssl/crypto.h>

void CRYPTO_set_locking_callback(void (*locking_function)(int mode,
int n, const char *file, int line));

void CRYPTO_set_id_callback(unsigned long (*id_function)(void));

int CRYPTO_num_locks(void);

/* struct CRYPTO_dynlock_value needs to be defined by the user */
struct CRYPTO_dynlock_value;

void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *
(*dyn_create_function)(char *file, int line));

void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
(int mode, struct CRYPTO_dynlock_value *l,
const char *file, int line));

void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
(struct CRYPTO_dynlock_value *l, const char *file, int line));

int CRYPTO_get_new_dynlockid(void);

void CRYPTO_destroy_dynlockid(int i);

void CRYPTO_lock(int mode, int n, const char *file, int line);

#define CRYPTO_w_lock(type) \
CRYPTO_lock(CRYPTO_LOCKCRYPTO_WRITE,type,__FILE__,__LINE__)

#define CRYPTO_w_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCKCRYPTO_WRITE,type,__FILE__,__LINE__)

#define CRYPTO_r_lock(type) \
CRYPTO_lock(CRYPTO_LOCKCRYPTO_READ,type,__FILE__,__LINE__)

#define CRYPTO_r_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCKCRYPTO_READ,type,__FILE__,__LINE__)

#define CRYPTO_add(addr,amount,type) \
CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)

DESCRIPTION
OpenSSL can safely be used in multi-threaded applications provided that at least two callback func-
tions are set.

locking_function(int mode, int n, const char *file, int line) is needed to perform locking on shared data
structures. (Note that OpenSSL uses a number of global data structures that will be implicitly shared
whenever multiple threads use OpenSSL.) Multi-threaded applications will crash at random if it is not
set.

locking_function()must be able to handle up toCRYPTO_num_locks()different mutex locks. It sets the
n−th lock if mode& CRYPTO_LOCK , and releases it otherwise.

file andline are the file number of the function setting the lock. They can be useful for debugging.

id_function(void) is a function that returns a threadID. It is not needed on Windows nor on platforms
wheregetpid()returns a differentID for each thread (most notably Linux).

Additionally, OpenSSL supports dynamic locks, and sometimes, some parts of OpenSSL need it for
better performance. To enable this, the following is required:

• Three additional callback function, dyn_create_function, dyn_lock_function and dyn_destroy_func-
tion.

394 2001-11-08 0.9.7c

threads(3) OpenSSL threads(3)

• A structure defined with the data that each lock needs to handle.

struct CRYPTO_dynlock_value has to be defined to contain whatever structure is needed to handle
locks.

dyn_create_function(const char *file, int line) is needed to create a lock. Multi-threaded applications
might crash at random if it is not set.

dyn_lock_function(int mode, CRYPTO_dynlock *l, const char *file, int line) is needed to perform
locking off dynamic lock numbered n. Multi-threaded applications might crash at random if it is not
set.

dyn_destroy_function(CRYPTO_dynlock *l, const char *file, int line) is needed to destroy the lock l.
Multi-threaded applications might crash at random if it is not set.

CRYPTO_get_new_dynlockid()is used to create locks. It will call dyn_create_function for the actual
creation.

CRYPTO_destroy_dynlockid()is used to destroy locks. It will call dyn_destroy_function for the actual
destruction.

CRYPTO_lock()is used to lock and unlock the locks. mode is a bitfield describing what should be
done with the lock. n is the number of the lock as returned fromCRYPTO_get_new_dynlockid(). mode
can be combined from the following values. These values are pairwise exclusive, with undefined be-
haviour if misused (for example,CRYPTO_READandCRYPTO_WRITEshould not be used together):

CRYPTO_LOCK 0x01
CRYPTO_UNLOCK 0x02
CRYPTO_READ 0x04
CRYPTO_WRITE 0x08

RETURN VALUES
CRYPTO_num_locks()returns the required number of locks.

CRYPTO_get_new_dynlockid()returns the index to the newly created lock.

The other functions return no values.

NOTE
You can find out if OpenSSL was configured with thread support:

#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#if defined(THREADS)

// thread support enabled
#else

// no thread support
#endif

Also, dynamic locks are currently not used internally by OpenSSL, but may do so in the future.

EXAMPLES
crypto/threads/mttest.cshows examples of the callback functions on Solaris, Irix and Win32.

HISTORY
CRYPTO_set_locking_callback()and CRYPTO_set_id_callback()are available in all versions of
SSLeay and OpenSSL.CRYPTO_num_locks()was added in OpenSSL 0.9.4. All functions dealing
with dynamic locks were added in OpenSSL 0.9.5b−dev.

SEE ALSO
crypto(3)

0.9.7c 2001-11-08 395

ui(3) OpenSSL ui(3)

NAME
UI_new, UI_new_method, UI_free, UI_add_input_string, UI_dup_input_string, UI_add_verify_string,
UI_dup_verify_string, UI_add_input_boolean, UI_dup_input_boolean, UI_add_info_string,
UI_dup_info_string, UI_add_error_string, UI_dup_error_string, UI_construct_prompt
UI_add_user_data, UI_get0_user_data, UI_get0_result, UI_process, UI_ctrl, UI_set_default_method,
UI_get_default_method, UI_get_method, UI_set_method, UI_OpenSSL, ERR_load_UI_strings − New
User Interface

SYNOPSIS
#include <openssl/ui.h>

typedef struct ui_st UI;
typedef struct ui_method_st UI_METHOD;

UI *UI_new(void);
UI *UI_new_method(const UI_METHOD *method);
void UI_free(UI *ui);

int UI_add_input_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize);

int UI_dup_input_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize);

int UI_add_verify_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize, const char *test_buf);

int UI_dup_verify_string(UI *ui, const char *prompt, int flags,
char *result_buf, int minsize, int maxsize, const char *test_buf);

int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc,
const char *ok_chars, const char *cancel_chars,
int flags, char *result_buf);

int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc,
const char *ok_chars, const char *cancel_chars,
int flags, char *result_buf);

int UI_add_info_string(UI *ui, const char *text);
int UI_dup_info_string(UI *ui, const char *text);
int UI_add_error_string(UI *ui, const char *text);
int UI_dup_error_string(UI *ui, const char *text);

/* These are the possible flags. They can be or’ed together. */
#define UI_INPUT_FLAG_ECHO 0x01
#define UI_INPUT_FLAG_DEFAULT_PWD 0x02

char *UI_construct_prompt(UI *ui_method,
const char *object_desc, const char *object_name);

void *UI_add_user_data(UI *ui, void *user_data);
void *UI_get0_user_data(UI *ui);

const char *UI_get0_result(UI *ui, int i);

int UI_process(UI *ui);

int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)());
#define UI_CTRL_PRINT_ERRORS 1
#define UI_CTRL_IS_REDOABLE 2

void UI_set_default_method(const UI_METHOD *meth);
const UI_METHOD *UI_get_default_method(void);
const UI_METHOD *UI_get_method(UI *ui);
const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth);

UI_METHOD *UI_OpenSSL(void);

DESCRIPTION
UI stands for User Interface, and is general purpose set of routines to prompt the user for text-based
information. Through user-written methods (seeui_create(3)), prompting can be done in any way

396 2001-10-25 0.9.7c

ui(3) OpenSSL ui(3)

imaginable, be it plain text prompting, through dialog boxes or from a cell phone.

All the functions work through a context of the typeUI. This context contains all the information
needed to prompt correctly as well as a reference to aUI_METHOD, which is an ordered vector of func-
tions that carry out the actual prompting.

The first thing to do is to create aUI with UI_new()or UI_new_method(), then add information to it
with the UI_add or UI_dup functions. Also, user-defined random data can be passed down to the
underlying method through calls to UI_add_user_data. The defaultUI method doesn’t care about these
data, but other methods might. Finally, useUI_process()to actually perform the prompting and
UI_get0_result()to find the result to the prompt.

A UI can contain more than one prompt, which are performed in the given sequence. Each prompt gets
an index number which is returned by the UI_add and UI_dup functions, and has to be used to get the
corresponding result withUI_get0_result().

The functions are as follows:

UI_new()creates a newUI using the defaultUI method. When done with thisUI, it should be freed
usingUI_free().

UI_new_method()creates a newUI using the givenUI method. When done with thisUI, it should be
freed usingUI_free().

UI_OpenSSL()returns the built-inUI method (note: not the default one, since the default can be
changed. See further on). This method is the most machine/OS dependent part of OpenSSL and nor-
mally generates the most problems when porting.

UI_free()removes aUI from memory, along with all other pieces of memory that’s connected to it, like
duplicated input strings, results and others.

UI_add_input_string()andUI_add_verify_string()add a prompt to theUI, as well as flags and a result
buffer and the desired minimum and maximum sizes of the result. The given information is used to
prompt for information, for example a password, and to verify a password (i.e. having the user enter it
twice and check that the same string was entered twice).UI_add_verify_string()takes and extra argu-
ment that should be a pointer to the result buffer of the input string that it’s supposed to verify, or verifi-
cation will fail.

UI_add_input_boolean()adds a prompt to theUI that’s supposed to be answered in a boolean way, with
a single character for yes and a different character for no. A set of characters that can be used to cancel
the prompt is given as well. The prompt itself is really divided in two, one part being the descriptive
text (given through thepromptargument) and one describing the possible answers (given through the
action_descargument).

UI_add_info_string()and UI_add_error_string()add strings that are shown at the same time as the
prompt for extra information or to show an error string. The difference between the two is only con-
ceptual. With the builtin method, there’s no technical difference between them. Other methods may
make a difference between them, however.

The flags currently supported areUI_INPUT_FLAG_ECHO, which is relevant forUI_add_input_string()
and will have the users response be echoed (when prompting for a password, this flag should obviously
not be used, andUI_INPUT_FLAG_DEFAULT_PWD, which means that a default password of some sort
will be used (completely depending on the application and theUI method).

UI_dup_input_string(), UI_dup_verify_string(),UI_dup_input_boolean(), UI_dup_info_string()and
UI_dup_error_string()are basically the same as their UI_add counterparts, except that they make their
own copies of all strings.

UI_construct_prompt()is a helper function that can be used to create a prompt from two pieces of
information: an description and a name. The default constructor (if there is none provided by the
method used) creates a string "Enterdescriptionfor name:‘‘. With the description ’’pass phrase‘‘ and
the file name ’’foo.key‘‘, that becomes ’’Enter pass phrase for foo.key:". Other methods may create
whatever string and may include encodings that will be processed by the other method functions.

UI_add_user_data()adds a piece of memory for the method to use at any time. The builtinUI method
doesn’t care about this info. Note that several calls to this function doesn’t add data, it replaces the pre-
vious blob with the one given as argument.

0.9.7c 2001-10-25 397

ui(3) OpenSSL ui(3)

UI_get0_user_data()retrieves the data that has last been given to theUI with UI_add_user_data().

UI_get0_result()returns a pointer to the result buffer associated with the information indexed byi.

UI_process()goes through the information given so far, does all the printing and prompting and
returns.

UI_ctrl() adds extra control for the application author. For now, it understands two commands:
UI_CTRL_PRINT_ERRORS, which makesUI_process()print the OpenSSL error stack as part of pro-
cessing theUI, andUI_CTRL_IS_REDOABLE, which returns a flag saying if the usedUI can be used
again or not.

UI_set_default_method()changes the defaultUI method to the one given.

UI_get_default_method()returns a pointer to the current defaultUI method.

UI_get_method()returns theUI method associated with a givenUI.

UI_set_method()changes theUI method associated with a givenUI.

SEE ALSO
ui_create(3), ui_compat(3)

HISTORY
TheUI section was first introduced in OpenSSL 0.9.7.

AUTHOR
Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

398 2001-10-25 0.9.7c

ui_compat(3) OpenSSL ui_compat(3)

NAME
des_read_password, des_read_2passwords, des_read_pw_string, des_read_pw − Compatibility user
interface functions

SYNOPSIS
int des_read_password(DES_cblock *key,const char *prompt,int verify);
int des_read_2passwords(DES_cblock *key1,DES_cblock *key2,

const char *prompt,int verify);

int des_read_pw_string(char *buf,int length,const char *prompt,int verify);
int des_read_pw(char *buf,char *buff,int size,const char *prompt,int verify);

DESCRIPTION
TheDESlibrary contained a few routines to prompt for passwords. These aren’t necessarely dependent
on DES, and have therefore become part of theUI compatibility library.

des_read_pw()writes the string specified byprompt to standard output turns echo off and reads an
input string from the terminal. The string is returned inbuf, which must have spac for at leastsize
bytes. Ifverify is set, the user is asked for the password twice and unless the two copies match, an error
is returned. The second password is stored inbuff, which must therefore also be at leastsizebytes. A
return code of −1 indicates a system error, 1 failure due to use interaction, and 0 is success. All other
functions described here usedes_read_pw()to do the work.

des_read_pw_string()is a variant ofdes_read_pw()that provides a buffer for you ifverify is set.

des_read_password()calls des_read_pw()and converts the password to aDES key by calling
DES_string_to_key(); des_read_2password()operates in the same way asdes_read_password()except
that it generates two keys by using theDES_string_to_2key()function.

NOTES
des_read_pw_string()is available in theMIT Kerberos library as well, and is also available under the
nameEVP_read_pw_string().

SEE ALSO
ui (3), ui_create(3)

AUTHOR
Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

0.9.7c 2001-10-25 399

X509_NAME_add_entry_by_txt(3) OpenSSL X509_NAME_add_entry_by_txt(3)

NAME
X509_NAME_add_entry_by_txt, X509_NAME_add_entry_by_OBJ,
X509_NAME_add_entry_by_NID, X509_NAME_add_entry, X509_NAME_delete_entry −
X509_NAME modification functions

SYNOPSIS
int X509_NAME_add_entry_by_txt(X509_NAME *name, char *field, int type, unsigned char *bytes,
int len, int loc, int set); int X509_NAME_add_entry_by_OBJ(X509_NAME *name,ASN1_OBJECT
*obj, int type, unsigned char *bytes, int len, int loc, int set); int
X509_NAME_add_entry_by_NID(X509_NAME *name, int nid, int type, unsigned char *bytes, int
len, int loc, int set); int X509_NAME_add_entry(X509_NAME *name,X509_NAME_ENTRY *ne, int
loc, int set); X509_NAME_ENTRY *X509_NAME_delete_entry(X509_NAME *name, int loc);

DESCRIPTION
X509_NAME_add_entry_by_txt(), X509_NAME_add_entry_by_OBJ() and
X509_NAME_add_entry_by_NID()add a field whose name is defined by a stringfield, an objectobj or
a NID nid respectively. The field value to be added is inbytesof lengthlen. If len is −1 then the field
length is calculated internally using strlen(bytes).

The type of field is determined bytype which can either be a definition of the type ofbytes (such as
MBSTRING_ASC) or a standardASN1 type (such asV_ASN1_IA5STRING). The new entry is added
to a position determined byloc andset.

X509_NAME_add_entry()adds a copy ofX509_NAME_ENTRY structurene to name. The new entry
is added to a position determined byloc andset. Since a copy ofne is addedne must be freed up after
the call.

X509_NAME_delete_entry()deletes an entry fromname at positionloc. The deleted entry is returned
and must be freed up.

NOTES
The use of string types such asMBSTRING_ASC or MBSTRING_UTF8 is strongly recommened for the
type parameter. This allows the internal code to correctly determine the type of the field and to apply
length checks according to the relevant standards. This is done usingASN1_STRING_set_by_NID().

If instead anASN1 type is used no checks are performed and the supplied data inbytes is used directly.

In X509_NAME_add_entry_by_txt()thefield string represents the field name using OBJ_txt2obj(field,
0).

The loc andset parameters determine where a new entry should be added. For almost all applications
loc can be set to −1 andset to 0. This adds a new entry to the end ofname as a single valued Rela-
tiveDistinguishedName (RDN).

loc actually determines the index where the new entry is inserted: if it is −1 it is appended.

setdetermines how the new type is added. If it is zero a newRDN is created.

If set is −1 or 1 it is added to the previous or nextRDN structure respectively. This will then be a multi-
valuedRDN: since multivalues RDNs are very seldom usedset is almost always set to zero.

EXAMPLES
Create anX509_NAME structure:

‘‘C=UK, O=Disorganized Organization, CN=Joe Bloggs’’

400 2002-11-13 0.9.7c

X509_NAME_add_entry_by_txt(3) OpenSSL X509_NAME_add_entry_by_txt(3)

X509_NAME *nm;
nm = X509_NAME_new();
if (nm == NULL)

/* Some error */
if (!X509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,

"C", "UK", -1, -1, 0))
/* Error */

if (!X509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,
"O", "Disorganized Organization", -1, -1, 0))

/* Error */
if (!X509_NAME_add_entry_by_txt(nm, MBSTRING_ASC,

"CN", "Joe Bloggs", -1, -1, 0))
/* Error */

RETURN VALUES
X509_NAME_add_entry_by_txt(), X509_NAME_add_entry_by_OBJ(),
X509_NAME_add_entry_by_NID()andX509_NAME_add_entry()return 1 for success of 0 if an error
occurred.

X509_NAME_delete_entry()returns either the deletedX509_NAME_ENTRY structure ofNULL if an
error occurred.

BUGS
type can still be set toV_ASN1_APP_CHOOSEto use a different algorithm to determine field types.
Since this form does not understand multicharacter types, performs no length checks and can result in
invalid field types its use is strongly discouraged.

SEE ALSO
ERR_get_error(3), d2i_X509_NAME(3)

HISTORY

0.9.7c 2002-11-13 401

X509_NAME_ENTRY_get_object(3) OpenSSL X509_NAME_ENTRY_get_object(3)

NAME
X509_NAME_ENTRY_get_object, X509_NAME_ENTRY_get_data,
X509_NAME_ENTRY_set_object, X509_NAME_ENTRY_set_data, X509_NAME_ENTRY_cre-
ate_by_txt, X509_NAME_ENTRY_create_by_NID, X509_NAME_ENTRY_create_by_OBJ −
X509_NAME_ENTRY utility functions

SYNOPSIS
ASN1_OBJECT * X509_NAME_ENTRY_get_object(X509_NAME_ENTRY *ne);ASN1_STRING *
X509_NAME_ENTRY_get_data(X509_NAME_ENTRY *ne);

int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne,ASN1_OBJECT *obj); int
X509_NAME_ENTRY_set_data(X509_NAME_ENTRY *ne, int type, unsigned char *bytes, int len);

X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne, char
*field, int type, unsigned char *bytes, int len); X509_NAME_ENTRY *X509_NAME_ENTRY_cre-
ate_by_NID(X509_NAME_ENTRY **ne, int nid, int type,unsigned char *bytes, int len);
X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne,
ASN1_OBJECT*obj, int type,unsigned char *bytes, int len);

DESCRIPTION
X509_NAME_ENTRY_get_object()retrieves the field name ofne in andASN1_OBJECT structure.

X509_NAME_ENTRY_get_data()retrieves the field value ofne in andASN1_STRING structure.

X509_NAME_ENTRY_set_object()sets the field name ofne to obj.

X509_NAME_ENTRY_set_data()sets the field value ofne to string typetype and value determined by
bytesandlen.

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_NID() and
X509_NAME_ENTRY_create_by_OBJ()create and return anX509_NAME_ENTRY structure.

NOTES
X509_NAME_ENTRY_get_object()and X509_NAME_ENTRY_get_data()can be used to examine an
X509_NAME_ENTRY function as returned byX509_NAME_get_entry()for example.

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_NID(), and
X509_NAME_ENTRY_create_by_OBJ()create and return an

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_OBJ(),
X509_NAME_ENTRY_create_by_NID()andX509_NAME_ENTRY_set_data()are seldom used in prac-
tice becauseX509_NAME_ENTRY structures are almost always part ofX509_NAME structures and
the correspondingX509_NAME functions are typically used to create and add new entries in a single
operation.

The arguments of these functions support similar options to the similarly named ones of the corre-
spondingX509_NAME functions such asX509_NAME_add_entry_by_txt(). So for exampletype can
be set toMBSTRING_ASC but in the case ofX509_set_data()the field name must be set first so the rel-
evant field information can be looked up internally.

RETURN VALUES
SEE ALSO

ERR_get_error(3), d2i_X509_NAME(3), OBJ_nid2obj(3),OBJ_nid2obj(3)

HISTORY
TBA

402 2002-11-13 0.9.7c

X509_NAME_get_index_by_NID(3) OpenSSL X509_NAME_get_index_by_NID(3)

NAME
X509_NAME_get_index_by_NID, X509_NAME_get_index_by_OBJ, X509_NAME_get_entry,
X509_NAME_entry_count, X509_NAME_get_text_by_NID, X509_NAME_get_text_by_OBJ −
X509_NAME lookup and enumeration functions

SYNOPSIS
int X509_NAME_get_index_by_NID(X509_NAME *name,int nid,int lastpos); int
X509_NAME_get_index_by_OBJ(X509_NAME *name,ASN1_OBJECT *obj, int lastpos);

int X509_NAME_entry_count(X509_NAME *name); X509_NAME_ENTRY
*X509_NAME_get_entry(X509_NAME *name, int loc);

int X509_NAME_get_text_by_NID(X509_NAME *name, int nid, char *buf,int len); int
X509_NAME_get_text_by_OBJ(X509_NAME *name,ASN1_OBJECT*obj, char *buf,int len);

DESCRIPTION
These functions allow anX509_NAME structure to be examined. TheX509_NAME structure is the
same as theName type defined inRFC2459(and elsewhere) and used for example in certificate subject
and issuer names.

X509_NAME_get_index_by_NID()and X509_NAME_get_index_by_OBJ()retrieve the next index
matchingnid or obj after lastpos.lastposshould initially be set to −1. If there are no more entries −1
is returned.

X509_NAME_entry_count()returns the total number of entries inname.

X509_NAME_get_entry()retrieves theX509_NAME_ENTRY from namecorresponding to indexloc.
Acceptable values forloc run from 0 to (X509_NAME_entry_count(name) − 1). The value returned is
an internal pointer which must not be freed.

X509_NAME_get_text_by_NID(), X509_NAME_get_text_by_OBJ()retrieve the ‘‘text’’ from the first
entry innamewhich matchesnid or obj, if no such entry exists −1 is returned. At mostlen bytes will
be written and the text written tobuf will be null terminated. The length of the output string written is
returned excluding the terminating null. Ifbuf is <NULL> then the amount of space needed inbuf
(excluding the final null) is returned.

NOTES
X509_NAME_get_text_by_NID()and X509_NAME_get_text_by_OBJ()are legacy functions which
have various limitations which make them of minimal use in practice. They can only find the first
matching entry and will copy the contents of the field verbatim: this can be highly confusing if the tar-
get is a muticharacter string type like a BMPString or a UTF8String.

For a more general solutionX509_NAME_get_index_by_NID()or X509_NAME_get_index_by_OBJ()
should be used followed byX509_NAME_get_entry()on any matching indices and then the various
X509_NAME_ENTRY utility functions on the result.

EXAMPLES
Process all entries:

int i;
X509_NAME_ENTRY *e;

for (i = 0; i < X509_NAME_entry_count(nm); i++)
{
e = X509_NAME_get_entry(nm, i);
/* Do something with e */
}

Process all commonName entries:

int loc;
X509_NAME_ENTRY *e;

0.9.7c 2002-11-13 403

X509_NAME_get_index_by_NID(3) OpenSSL X509_NAME_get_index_by_NID(3)

loc = -1;
for (;;)

{
lastpos = X509_NAME_get_index_by_NID(nm, NID_commonName, lastpos);
if (lastpos == -1)

break;
e = X509_NAME_get_entry(nm, lastpos);
/* Do something with e */
}

RETURN VALUES
X509_NAME_get_index_by_NID()andX509_NAME_get_index_by_OBJ()return the index of the next
matching entry or −1 if not found.

X509_NAME_entry_count()returns the total number of entries.

X509_NAME_get_entry()returns anX509_NAME pointer to the requested entry orNULL if the index
is invalid.

SEE ALSO
ERR_get_error(3), d2i_X509_NAME(3)

HISTORY
TBA

404 2002-11-13 0.9.7c

X509_NAME_print_ex(3) OpenSSL X509_NAME_print_ex(3)

NAME
X509_NAME_print_ex, X509_NAME_print_ex_fp, X509_NAME_print, X509_NAME_oneline −
X509_NAME printing routines.

SYNOPSIS
#include <openssl/x509.h>

int X509_NAME_print_ex(BIO *out, X509_NAME *nm, int indent, unsigned long flags);
int X509_NAME_print_ex_fp(FILE *fp, X509_NAME *nm, int indent, unsigned long flags);
char * X509_NAME_oneline(X509_NAME *a,char *buf,int size);
int X509_NAME_print(BIO *bp, X509_NAME *name, int obase);

DESCRIPTION
X509_NAME_print_ex()prints a human readable version ofnm to BIO out. Each line (for multiline
formats) is indented byindent spaces. The output format can be extensively customised by use of the
flagsparameter.

X509_NAME_print_ex_fp()is identical toX509_NAME_print_ex()except the output is written toFILE
pointerfp.

X509_NAME_oneline()prints anASCII version ofa to buf. At mostsizebytes will be written. Ifbuf is
NULL then a buffer is dynamically allocated and returned, otherwisebuf is returned.

X509_NAME_print()prints outname to bp indenting each line byobasecharacters. Multiple lines are
used if the output (including indent) exceeds 80 characters.

NOTES
The functionsX509_NAME_oneline()andX509_NAME_print()are legacy functions which produce a
non standard output form, they don’t handle multi character fields and have various quirks and incon-
sistencies. Their use is strongly discouraged in new applications.

Although there are a large number of possible flags for most purposesXN_FLAG_ONELINE ,
XN_FLAG_MULTILINE or XN_FLAG_RFC2253 will suffice. As noted on the
ASN1_STRING_print_ex(3) manual page forUTF8 terminals theASN1_STRFLAGS_ESC_MSBshould
be unset: so for exampleXN_FLAG_ONELINE & ˜ASN1_STRFLAGS_ESC_MSBwould be used.

The complete set of the flags supported byX509_NAME_print_ex()is listed below.

Several options can be ored together.

The options XN_FLAG_SEP_COMMA_PLUS, XN_FLAG_SEP_CPLUS_SPC,
XN_FLAG_SEP_SPLUS_SPCand XN_FLAG_SEP_MULTILINE determine the field separators to use.
Tw o distinct separators are used between distinct RelativeDistinguishedName components and separate
values in the sameRDN for a multi-valuedRDN. Multi-valued RDNs are currently very rare so the sec-
ond separator will hardly ever be used.

XN_FLAG_SEP_COMMA_PLUS uses comma and plus as separators.XN_FLAG_SEP_CPLUS_SPC
uses comma and plus with spaces: this is more readable that plain comma and plus.
XN_FLAG_SEP_SPLUS_SPC uses spaced semicolon and plus.XN_FLAG_SEP_MULTILINE uses
spaced newline and plus respectively.

If XN_FLAG_DN_REV is set the wholeDN is printed in reversed order.

The fieldsXN_FLAG_FN_SN, XN_FLAG_FN_LN , XN_FLAG_FN_OID , XN_FLAG_FN_NONE deter-
mine how a field name is displayed. It will use the short name (e.g.CN) the long name (e.g. common-
Name) always useOID numerical form (normally OIDs are only used if the field name is not recog-
nised) and no field name respectively.

If XN_FLAG_SPC_EQ is set then spaces will be placed around the ’=’ character separating field names
and values.

If XN_FLAG_DUMP_UNKNOWN_FIELDS is set then the encoding of unknown fields is printed instead
of the values.

If XN_FLAG_FN_ALIGN is set then field names are padded to 20 characters: this is only of use for
multiline format.

Additionally all the options supported byASN1_STRING_print_ex()can be used to control how each

0.9.7c 2002-10-20 405

X509_NAME_print_ex(3) OpenSSL X509_NAME_print_ex(3)

field value is displayed.

In addition a number options can be set for commonly used formats.

XN_FLAG_RFC2253 sets options which produce an output compatible withRFC2253it is equivalent to:
ASN1_STRFLGS_RFC2253 XN_FLAG_SEP_COMMA_PLUS XN_FLAG_DN_REV
XN_FLAG_FN_SN XN_FLAG_DUMP_UNKNOWN_FIELDS

XN_FLAG_ONELINE is a more readable one line format it is the same as:
ASN1_STRFLGS_RFC2253 ASN1_STRFLGS_ESC_QUOTE XN_FLAG_SEP_CPLUS_SPC
XN_FLAG_SPC_EQ XN_FLAG_FN_SN

XN_FLAG_MULTILINE is a multiline format is is the same as:
ASN1_STRFLGS_ESC_CTRL ASN1_STRFLGS_ESC_MSB XN_FLAG_SEP_MULTILINE
XN_FLAG_SPC_EQ XN_FLAG_FN_LN XN_FLAG_FN_ALIGN

XN_FLAG_COMPAT uses a format identical toX509_NAME_print(): in fact it calls
X509_NAME_print()internally.

SEE ALSO
ASN1_STRING_print_ex(3)

HISTORY
TBA

406 2002-10-20 0.9.7c

X509_new(3) OpenSSL X509_new(3)

NAME
X509_new, X509_free − X509 certificate ASN1 allocation functions

SYNOPSIS
X509 *X509_new(void);
void X509_free(X509 *a);

DESCRIPTION
The X509ASN1 allocation routines, allocate and free an X509 structure, which represents an X509 cer-
tificate.

X509_new()allocates and initializes a X509 structure.

X509_free()frees up theX509structurea.

RETURN VALUES
If the allocation fails,X509_new()returns NULL and sets an error code that can be obtained by
ERR_get_error(3). Otherwise it returns a pointer to the newly allocated structure.

X509_free()returns no value.

SEE ALSO
ERR_get_error(3), d2i_X509(3)

HISTORY
X509_new()andX509_free()are available in all versions of SSLeay and OpenSSL.

0.9.7c 2002-11-13 407

CONFIG(5) OpenSSL CONFIG(5)

NAME
config − OpenSSL CONF library configuration files

DESCRIPTION
The OpenSSLCONF library can be used to read configuration files. It is used for the OpenSSL master
configuration fileopenssl.cnfand in a few other places likeSPKAC files and certificate extension files
for thex509utility.

A configuration file is divided into a number of sections. Each section starts with a line[section_name
] and ends when a new section is started or end of file is reached. A section name can consist of
alphanumeric characters and underscores.

The first section of a configuration file is special and is referred to as thedefault section this is usually
unnamed and is from the start of file until the first named section. When a name is being looked up it is
first looked up in a named section (if any) and then the default section.

The environment is mapped onto a section calledENV.

Comments can be included by preceding them with the# character

Each section in a configuration file consists of a number of name and value pairs of the form
name=value

Thenamestring can contain any alphanumeric characters as well as a few punctuation symbols such as
. , ; and_.

Thevalue string consists of the string following the= character until end of line with any leading and
trailing white space removed.

The value string undergoes variable expansion. This can be done by including the form$var or ${var} :
this will substitute the value of the named variable in the current section. It is also possible to substitute
a value from another section using the syntax$section::nameor ${section::name}. By using the form
$ENV::name environment variables can be substituted. It is also possible to assign values to environ-
ment variables by using the nameENV::name, this will work if the program looks up environment
variables using theCONF library instead of callinggetenv() directly.

It is possible to escape certain characters by using any kind of quote or the\ character. By making the
last character of a line a\ a value string can be spread across multiple lines. In addition the sequences
\n, \r, \b and\t are recognized.

NOTES
If a configuration file attempts to expand a variable that doesn’t exist then an error is flagged and the
file will not load. This can happen if an attempt is made to expand an environment variable that doesn’t
exist. For example the default OpenSSL master configuration file used the value ofHOME which may
not be defined on non Unix systems.

This can be worked around by including adefault section to provide a default value: then if the envi-
ronment lookup fails the default value will be used instead. For this to work properly the default value
must be defined earlier in the configuration file than the expansion. See theEXAMPLES section for an
example of how to do this.

If the same variable exists in the same section then all but the last value will be silently ignored. In cer-
tain circumstances such as with DNs the same field may occur multiple times. This is usually worked
around by ignoring any characters before an initial. e.g.

1.OU="My first OU"
2.OU="My Second OU"

EXAMPLES
Here is a sample configuration file using some of the features mentioned above.

This is the default section.

HOME=/temp
RANDFILE= ${ENV::HOME}/.rnd
configdir=$ENV::HOME/config

408 2000-02-03 0.9.7c

CONFIG(5) OpenSSL CONFIG(5)

[s ection_one]

We are now in section one.

Quotes permit leading and trailing whitespace
any = " any variable name "

other = A string that can \
cover several lines \
by including \\ characters

message = Hello World\n

[section_two]

greeting = $section_one::message

This next example shows how to expand environment variables safely.

Suppose you want a variable calledtmpfile to refer to a temporary filename. The directory it is placed
in can determined by the theTEMP or TMP environment variables but they may not be set to any value
at all. If you just include the environment variable names and the variable doesn’t exist then this will
cause an error when an attempt is made to load the configuration file. By making use of the default sec-
tion both values can be looked up withTEMP taking priority and/tmp used if neither is defined:

TMP=/tmp
The above value is used if TMP isn’t in the environment
TEMP=$ENV::TMP
The above value is used if TEMP isn’t in the environment
tmpfile=${ENV::TEMP}/tmp.filename

BUGS
Currently there is no way to include characters using the octal\nnn form. Strings are all null termi-
nated so nulls cannot form part of the value.

The escaping isn’t quite right: if you want to use sequences like\n you can’t use any quote escaping on
the same line.

Files are loaded in a single pass. This means that an variable expansion will only work if the variables
referenced are defined earlier in the file.

SEE ALSO
x509(1), req(1), ca(1)

0.9.7c 2000-02-03 409

DES_MODES(7) OpenSSL DES_MODES(7)

NAME
Modes of DES − the variants of DES and other crypto algorithms of OpenSSL

DESCRIPTION
Several crypto algorithms for OpenSSL can be used in a number of modes. Those are used for using
block ciphers in a way similar to stream ciphers, among other things.

OVERVIEW
Electronic Codebook Mode (ECB)

Normally, this is found as the functionalgorithm_ecb_encrypt().

• 64 bits are enciphered at a time.

• The order of the blocks can be rearranged without detection.

• The same plaintext block always produces the same ciphertext block (for the same key) making it
vulnerable to a ’dictionary attack’.

• An error will only affect one ciphertext block.

Cipher Block Chaining Mode (CBC)

Normally, this is found as the functionalgorithm_cbc_encrypt(). Be aware thatdes_cbc_encrypt()is
not reallyDES CBC(it does not update theIV); usedes_ncbc_encrypt()instead.

• a multiple of 64 bits are enciphered at a time.

• The CBC mode produces the same ciphertext whenever the same plaintext is encrypted using the
same key and starting variable.

• The chaining operation makes the ciphertext blocks dependent on the current and all preceding plain-
text blocks and therefore blocks can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• An error will affect the current and the following ciphertext blocks.

Cipher Feedback Mode (CFB)

Normally, this is found as the functionalgorithm_cfb_encrypt().

• a number of bits (j) <= 64 are enciphered at a time.

• The CFB mode produces the same ciphertext whenever the same plaintext is encrypted using the
same key and starting variable.

• The chaining operation makes the ciphertext variables dependent on the current and all preceding
variables and therefore j−bit variables are chained together and can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• The strength of theCFB mode depends on the size of k (maximal if j == k). In my implementation
this is always the case.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit
of plaintext and thus cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• An error will affect the current and the following ciphertext variables.

Output Feedback Mode (OFB)

Normally, this is found as the functionalgorithm_ofb_encrypt().

• a number of bits (j) <= 64 are enciphered at a time.

• TheOFB mode produces the same ciphertext whenever the same plaintext enciphered using the same
key and starting variable. More over, in theOFB mode the same key stream is produced when the
same key and start variable are used. Consequently, for security reasons a specific start variable
should be used only once for a given key.

410 2002-03-05 0.9.7c

DES_MODES(7) OpenSSL DES_MODES(7)

• The absence of chaining makes theOFB more vulnerable to specific attacks.

• The use of different start variables values prevents the same plaintext enciphering to the same cipher-
text, by producing different key streams.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit
of plaintext and thus cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• OFB mode of operation does not extend ciphertext errors in the resultant plaintext output. Every bit
error in the ciphertext causes only one bit to be in error in the deciphered plaintext.

• OFB mode is not self−synchronizing. If the two operation of encipherment and decipherment get out
of synchronism, the system needs to be re−initialized.

• Each re-initialization should use a value of the start variable different from the start variable values
used before with the same key. The reason for this is that an identical bit stream would be produced
each time from the same parameters. This would be susceptible to a ’known plaintext’ attack.

Triple ECB Mode

Normally, this is found as the functionalgorithm_ecb3_encrypt().

• Encrypt with key1, decrypt with key2 and encrypt with key3 again.

• As for ECB encryption but increases the key length to 168 bits. There are theoretic attacks that can
be used that make the effective key length 112 bits, but this attack also requires 2ˆ56 blocks of mem-
ory, not very likely, even for theNSA.

• If both keys are the same it is equivalent to encrypting once with just one key.

• If the first and last key are the same, the key length is 112 bits. There are attacks that could reduce
the effective key strength to only slightly more than 56 bits, but these require a lot of memory.

• If all 3 keys are the same, this is effectively the same as normal ecb mode.

Triple CBC Mode

Normally, this is found as the functionalgorithm_ede3_cbc_encrypt().

• Encrypt with key1, decrypt with key2 and then encrypt with key3.

• As for CBC encryption but increases the key length to 168 bits with the same restrictions as for triple
ecb mode.

NOTES
This text was been written in large parts by Eric Young in his original documentation for SSLeay, the
predecessor of OpenSSL. In turn, he attributed it to:

AS 2805.5.2
Australian Standard
Electronic funds transfer - Requirements for interfaces,
Part 5.2: Modes of operation for an n-bit block cipher algorithm
Appendix A

SEE ALSO
blowfish(3), des(3), idea(3), rc2 (3)

0.9.7c 2002-03-05 411

	ASN1PARSE (1)
	CA (1)
	CA.PL (1)
	CIPHERS (1)
	CRL (1)
	CRL2PKCS7 (1)
	DGST (1)
	DHPARAM (1)
	DSA (1)
	DSAPARAM (1)
	ENC (1)
	GENDSA (1)
	GENRSA (1)
	NSEQ (1)
	OCSP (1)
	OPENSSL (1)
	PASSWD (1)
	PKCS12 (1)
	PKCS7 (1)
	PKCS8 (1)
	RAND (1)
	REQ (1)
	RSA (1)
	RSAUTL (1)
	S_CLIENT (1)
	S_SERVER (1)
	SESS_ID (1)
	SMIME (1)
	SPEED (1)
	SPKAC (1)
	VERIFY (1)
	VERSION (1)
	X509 (1)
	ASN1_OBJECT_new (3)
	ASN1_STRING_length (3)
	ASN1_STRING_new (3)
	ASN1_STRING_print_ex (3)
	bio (3)
	BIO_ctrl (3)
	BIO_f_base64 (3)
	BIO_f_buffer (3)
	BIO_f_cipher (3)
	BIO_f_md (3)
	BIO_f_null (3)
	BIO_f_ssl (3)
	BIO_find_type (3)
	BIO_new (3)
	BIO_push (3)
	BIO_read (3)
	BIO_s_accept (3)
	BIO_s_bio (3)
	BIO_s_connect (3)
	BIO_s_fd (3)
	BIO_s_file (3)
	BIO_s_mem (3)
	BIO_s_null (3)
	BIO_s_socket (3)
	BIO_set_callback (3)
	BIO_should_retry (3)
	blowfish (3)
	bn (3)
	BN_add (3)
	BN_add_word (3)
	BN_bn2bin (3)
	BN_cmp (3)
	BN_copy (3)
	BN_CTX_new (3)
	BN_CTX_start (3)
	BN_generate_prime (3)
	bn_internal (3)
	BN_mod_inverse (3)
	BN_mod_mul_montgomery (3)
	BN_mod_mul_reciprocal (3)
	BN_new (3)
	BN_num_bytes (3)
	BN_rand (3)
	BN_set_bit (3)
	BN_swap (3)
	BN_zero (3)
	buffer (3)
	crypto (3)
	CRYPTO_set_ex_data (3)
	d2i_ASN1_OBJECT (3)
	d2i_DHparams (3)
	d2i_DSAPublicKey (3)
	d2i_PKCS8PrivateKey (3)
	d2i_RSAPublicKey (3)
	d2i_SSL_SESSION (3)
	d2i_X509 (3)
	d2i_X509_ALGOR (3)
	d2i_X509_CRL (3)
	d2i_X509_NAME (3)
	d2i_X509_REQ (3)
	d2i_X509_SIG (3)
	des (3)
	dh (3)
	DH_generate_key (3)
	DH_generate_parameters (3)
	DH_get_ex_new_index (3)
	DH_new (3)
	DH_set_method (3)
	DH_size (3)
	dsa (3)
	DSA_do_sign (3)
	DSA_dup_DH (3)
	DSA_generate_key (3)
	DSA_generate_parameters (3)
	DSA_get_ex_new_index (3)
	DSA_new (3)
	DSA_set_method (3)
	DSA_SIG_new (3)
	DSA_sign (3)
	DSA_size (3)
	engine (3)
	err (3)
	ERR_clear_error (3)
	ERR_error_string (3)
	ERR_get_error (3)
	ERR_GET_LIB (3)
	ERR_load_crypto_strings (3)
	ERR_load_strings (3)
	ERR_print_errors (3)
	ERR_put_error (3)
	ERR_remove_state (3)
	evp (3)
	EVP_DigestInit (3)
	EVP_EncryptInit (3)
	EVP_OpenInit (3)
	EVP_PKEY_new (3)
	EVP_PKEY_set1_RSA (3)
	EVP_SealInit (3)
	EVP_SignInit (3)
	EVP_VerifyInit (3)
	lh_stats (3)
	lhash (3)
	OBJ_nid2obj (3)
	OpenSSL_add_all_algorithms (3)
	OPENSSL_VERSION_NUMBER (3)
	PKCS12_create (3)
	PKCS12_parse (3)
	PKCS7_decrypt (3)
	PKCS7_encrypt (3)
	PKCS7_sign (3)
	PKCS7_verify (3)
	rand (3)
	RAND_add (3)
	RAND_bytes (3)
	RAND_cleanup (3)
	RAND_egd (3)
	RAND_load_file (3)
	RAND_set_rand_method (3)
	ripemd (3)
	rsa (3)
	RSA_blinding_on (3)
	RSA_check_key (3)
	RSA_generate_key (3)
	RSA_get_ex_new_index (3)
	RSA_new (3)
	RSA_padding_add_PKCS1_type_1 (3)
	RSA_print (3)
	RSA_private_encrypt (3)
	RSA_public_encrypt (3)
	RSA_set_method (3)
	RSA_sign (3)
	RSA_sign_ASN1_OCTET_STRING (3)
	RSA_size (3)
	sha (3)
	SMIME_read_PKCS7 (3)
	SMIME_write_PKCS7 (3)
	SSL_accept (3)
	SSL_alert_type_string (3)
	SSL_CIPHER_get_name (3)
	SSL_clear (3)
	SSL_COMP_add_compression_method (3)
	SSL_connect (3)
	SSL_CTX_add_extra_chain_cert (3)
	SSL_CTX_add_session (3)
	SSL_CTX_ctrl (3)
	SSL_CTX_flush_sessions (3)
	SSL_CTX_free (3)
	SSL_CTX_get_ex_new_index (3)
	SSL_CTX_get_verify_mode (3)
	SSL_CTX_load_verify_locations (3)
	SSL_CTX_new (3)
	SSL_CTX_sess_number (3)
	SSL_CTX_sess_set_cache_size (3)
	SSL_CTX_sess_set_get_cb (3)
	SSL_CTX_sessions (3)
	SSL_CTX_set_cert_store (3)
	SSL_CTX_set_cert_verify_callback (3)
	SSL_CTX_set_cipher_list (3)
	SSL_CTX_set_client_CA_list (3)
	SSL_CTX_set_client_cert_cb (3)
	SSL_CTX_set_default_passwd_cb (3)
	SSL_CTX_set_generate_session_id (3)
	SSL_CTX_set_info_callback (3)
	SSL_CTX_set_max_cert_list (3)
	SSL_CTX_set_mode (3)
	SSL_CTX_set_msg_callback (3)
	SSL_CTX_set_options (3)
	SSL_CTX_set_quiet_shutdown (3)
	SSL_CTX_set_session_cache_mode (3)
	SSL_CTX_set_session_id_context (3)
	SSL_CTX_set_ssl_version (3)
	SSL_CTX_set_timeout (3)
	SSL_CTX_set_tmp_dh_callback (3)
	SSL_CTX_set_tmp_rsa_callback (3)
	SSL_CTX_set_verify (3)
	SSL_CTX_use_certificate (3)
	SSL_do_handshake (3)
	SSL_free (3)
	SSL_get_ciphers (3)
	SSL_get_client_CA_list (3)
	SSL_get_current_cipher (3)
	SSL_get_default_timeout (3)
	SSL_get_error (3)
	SSL_get_ex_data_X509_STORE_CTX_idx (3)
	SSL_get_ex_new_index (3)
	SSL_get_fd (3)
	SSL_get_peer_cert_chain (3)
	SSL_get_peer_certificate (3)
	SSL_get_rbio (3)
	SSL_get_session (3)
	SSL_get_SSL_CTX (3)
	SSL_get_verify_result (3)
	SSL_get_version (3)
	SSL_library_init (3)
	SSL_load_client_CA_file (3)
	SSL_new (3)
	SSL_pending (3)
	SSL_read (3)
	SSL_rstate_string (3)
	SSL_SESSION_free (3)
	SSL_SESSION_get_ex_new_index (3)
	SSL_SESSION_get_time (3)
	SSL_session_reused (3)
	SSL_set_bio (3)
	SSL_set_connect_state (3)
	SSL_set_fd (3)
	SSL_set_session (3)
	SSL_set_shutdown (3)
	SSL_set_verify_result (3)
	SSL_shutdown (3)
	SSL_state_string (3)
	SSL_want (3)
	SSL_write (3)
	threads (3)
	ui (3)
	ui_compat (3)
	X509_NAME_add_entry_by_txt (3)
	X509_NAME_ENTRY_get_object (3)
	X509_NAME_get_index_by_NID (3)
	X509_NAME_print_ex (3)
	X509_new (3)
	CONFIG (5)
	DES_MODES (7)

